早教吧作业答案频道 -->数学-->
如图,已知:ABCD是正方形,E是CF上的一点,若DBEF是菱形,则∠EBC等于()A.15°B.22.5°C.30°D.25°
题目详情
如图,已知:ABCD是正方形,E是CF上的一点,若DBEF是菱形,则∠EBC等于( )
A. 15°
B. 22.5°
C. 30°
D. 25°
A. 15°
B. 22.5°
C. 30°
D. 25°
▼优质解答
答案和解析
过D作DG⊥CF,垂足为G,如图所示:
∵四边形ABCD为正方形,
∴∠CBD=∠CDB=45°,∠BCD=90°,
设正方形ABCD的边长为1,即AB=BC=CD=AD=1,
∴根据勾股定理得:BD=
=
,
∵四边形BEFD为菱形,
∴BE=EF=DF=BD=
,
又BD∥EF,DG⊥FC,
∴BD⊥DG,即∠BDG=90°,
∴∠CDG=∠BDG-∠BDC=90°-45°=45°,又∠DGC=90°,
∴△DCG为等腰直角三角形,又DC=1,
∴DG=DCsin45°=
,又DF=
,
在Rt△DFG中,由DG=
DF,
∴∠F=30°,
∴∠DBE=30°,
则∠EBC=∠DBC-∠DBE=45°-30°=15°.
故选A
∵四边形ABCD为正方形,
∴∠CBD=∠CDB=45°,∠BCD=90°,
设正方形ABCD的边长为1,即AB=BC=CD=AD=1,
∴根据勾股定理得:BD=
1+1 |
2 |
∵四边形BEFD为菱形,
∴BE=EF=DF=BD=
2 |
又BD∥EF,DG⊥FC,
∴BD⊥DG,即∠BDG=90°,
∴∠CDG=∠BDG-∠BDC=90°-45°=45°,又∠DGC=90°,
∴△DCG为等腰直角三角形,又DC=1,
∴DG=DCsin45°=
| ||
2 |
2 |
在Rt△DFG中,由DG=
1 |
2 |
∴∠F=30°,
∴∠DBE=30°,
则∠EBC=∠DBC-∠DBE=45°-30°=15°.
故选A
看了如图,已知:ABCD是正方形,...的网友还看了以下:
已知,如图,在平行四边形ABCD中,DE、BF分别平分∠ADC与∠ABC,交AB于点E、交CD于点 2020-05-16 …
如图,在梯形ABCD中,AB‖CD,∠A=,AB=3,CD=6,BE⊥BC交直线AD于点E.(1) 2020-06-12 …
如图所示,AB∥CD,直线EF与AB相交于点E,与CD相交于点F,FH是∠EFD的角平分线,且与A 2020-06-15 …
已知:如图1,在O中,直径AB=4,CD=2,直线AD,BC相交于点E.(1)∠E的度数为;(2) 2020-06-23 …
抛物线y=x2+bx+c(b小于等于0)的图像与x轴交于A`B两点,与y轴交于C点,其中点A坐标为 2020-06-29 …
f(x),g(x),h(x)在[a,b]上连续,(a,b)上可导,求证存在一个e属于(a,b)使得 2020-07-16 …
在四边形abcd中角dab等于角abc等于90度ad等于ab等于4,bc等于8,点n从a出发,沿a 2020-07-30 …
以X=-1/4为准线的抛物线的标准方程为1/ex2相切于p(e,e)处的切线方程式是(其中E是自然 2020-08-02 …
如图,在△ABC中,AB=AC,AD⊥BC于点D,点P在BC上,PE⊥BC,交BA的延长线于点E, 2020-08-03 …
如图△ABC内接于圆O且AB=AC,点D在圆上AD⊥AB于点A,AD与BC交于点E,如图,△ABC内 2020-11-03 …