早教吧作业答案频道 -->数学-->
1.求数列1,x+x^2,x^2+x^3+x^4,x^3+x^4+x^5+x^6,...前n项之和2.数列{an}中满足a1=1/2,a1+a2+...+an=n^2an,求an3.数列{an}中,a1=1,an*an+1=4^n,求前n项和sn4.f(x)=a1x+a2x^2+...+anx^n,且数列{an}为等差数列,n为正偶数,又f(1)=n^2,f(-1)
题目详情
▼优质解答
答案和解析
1、a1=x(1+x),a2=x^2(1+x),a3=x^3(1+x)……an=x^n(1+x)
Sn=x(1+x)*(1-x^n)/(1-x)
2、a1+a2+...+an=n^2an
a1+a2+...+a(n-1)=(n-1)^2a(n-1)
两式相减得
an=n^2an-(n-1)^2a(n-1)
(n-1)^2a(n-1)=an*(n^2-1)
(n-1)a(n-1)=an*(n+1)
an=(n-1)/(n+1)*an-1
=(n-1)/(n+1)*(n-2)/n*(n-3)/(n-1)*……*2/4*1/3*1/2
=1/n(n+1)
3、an*an+1=4^n
an-1*an=4^(n-1)
两式相除得
an+1/an-1=4
a1=1
a1*a2=4^1=4
所以an的前n项是1,4,4,16,16……
4、f(1)=a1+a2+……+an=n^2
-a1+a2-a3+a4+……+(-1)^2an=n
Sn=x(1+x)*(1-x^n)/(1-x)
2、a1+a2+...+an=n^2an
a1+a2+...+a(n-1)=(n-1)^2a(n-1)
两式相减得
an=n^2an-(n-1)^2a(n-1)
(n-1)^2a(n-1)=an*(n^2-1)
(n-1)a(n-1)=an*(n+1)
an=(n-1)/(n+1)*an-1
=(n-1)/(n+1)*(n-2)/n*(n-3)/(n-1)*……*2/4*1/3*1/2
=1/n(n+1)
3、an*an+1=4^n
an-1*an=4^(n-1)
两式相除得
an+1/an-1=4
a1=1
a1*a2=4^1=4
所以an的前n项是1,4,4,16,16……
4、f(1)=a1+a2+……+an=n^2
-a1+a2-a3+a4+……+(-1)^2an=n
看了1.求数列1,x+x^2,x^...的网友还看了以下:
观察下列各式,直接写出答案(x-1)(x+1)=x^2-1(x-1)(x^2+x+1)=x^3-1 2020-07-15 …
观察下面个式:(x-1)(x+1)=x^2-1;(x-1)(x^2+x+1)=x^3-1;(x-1 2020-07-22 …
初三的一元二次方程1,对于任何x都有x^2+mx+25=(x-n)^2(n>0),则m=?n=?2 2020-08-02 …
一元多项式在复数域内分解成一次因式的乘积(1)x^n-C(2n,2)x^(n-1)+C(2n,4) 2020-08-03 …
求高次和差公式推导,重金酬谢x^n-y^n=(x-y)[x^(n-1)+x^(n-2)y+x^(n- 2020-10-31 …
1.设M={x丨x=(kπ+π)/2-π/4,k∈Z},N={x丨x=kπ/4+π/2,k∈Z},则 2020-10-31 …
[(p+q)^3]^5除以[(p+q)^7]^2=,()^n=4^na^2nb^3n{-[-(-1) 2020-11-01 …
求幂函数f(x)=x^n的导数△y=(x+h)^n-x^n为什么会等于={x^n+n*x^(n-1) 2020-11-01 …
(x-y)(x+y)=x^2-y^2(x-y)(x^2+xy+y^2)=x^3-y^3……(x-y) 2020-11-03 …
概率论与数理统计课本里是这样说的,若X服从F(F中有一横线去掉的那种分布)(n/2,1/2)则称X服 2020-11-07 …