早教吧作业答案频道 -->其他-->
如图,在平面直角坐标系中,A(-1,0),B(4,0),C(0,2),连接AC、BC.(1)试说明:∠ACB=90°;(2)在第一象限内是否存在点P,使得以P、B、C为顶点的三角形与△AOC相似?若存在,请
题目详情
如图,在平面直角坐标系中,A(-1,0),B(4,0),C(0,2),连接AC、BC.
(1)试说明:∠ACB=90°;
(2)在第一象限内是否存在点P,使得以P、B、C为顶点的三角形与△AOC相似?若存在,请写出所有符合条件的点P的坐标;若不存在,请说明理由.
(1)试说明:∠ACB=90°;
(2)在第一象限内是否存在点P,使得以P、B、C为顶点的三角形与△AOC相似?若存在,请写出所有符合条件的点P的坐标;若不存在,请说明理由.
▼优质解答
答案和解析
(1)证明:如图1,
∵A(-1,0),B(4,0),C(0,2),
∴CO=2,AO=1,BO=4,
∴
=
=
,
∵∠AOC=∠BOC=90°,
∴△AOC∽△COB,
∴∠1=∠OBC,
∴∠1+∠2=90°,
即∠ACB=90°;
(2)①当△P1CB∽△OCA时,
∴∠P1CB=∠ACO,∠P1BC=∠CAO,
∴P1C∥BO,P1B∥CO,
∴四边形P1BOC是平行四边形,
又∵∠COB=90°,
∴平行四边形P1BOC是矩形,
∴P1B=CO=2,P1C=BO=4,
∴P1点坐标为:(4,2),
②过点P2,作P2D⊥BO于点D,
当△P2CB∽△ACO时,
∴
=
,
∵AO=1,CO=2,BC=
=2
,
∴
=
,
解得:P2B=
,
∵∠CBP2=90°,
∴∠CBO+∠P2BD=90°,
∵∠BP2D+∠P2BD=90°,
∴∠CBO=∠BP2D,
∵∠COB=∠BDP2,
∴△COB∽△BDP2,
∴△AOC∽△BDP2,
∴
=
=
,
设BD=x,则DP 2=2x,
∴x 2+(2x) 2=(
) 2,
解得:x=1,
∴BD=1,DP 2=2,
∴P2点坐标为:(5,2),
③当△P3CB∽△AOC时,
由②同理即可得出:P3点坐标为:(1,4),
④过点P4,作P4M⊥CO于点M,P4N⊥BO于点N,
当△P4CB∽△OAC时,
∴
=
,
∴
=
,
∴P4C=2,
则P4B=4,
设P4的坐标为:(x,y),
∴MC=y-2,P4M=x,BN=4-x,P4N=y,
∴
,
可得y=2x,
∴(2x)2+(4-x)2=16,
解得:x=
或x=0(不合题意舍去),
故y=
,
P4的坐标为:(
,
),
⑤当△AOC∽△BCP5时,P5的坐标是:(4,10);
⑥当△AOC∽△P6BC,时,P6的坐标是:(8,8);
综上所述P点坐标为:(4,2),(5,2),(1,4),(
,
)(4,10)(8,8).
∵A(-1,0),B(4,0),C(0,2),
∴CO=2,AO=1,BO=4,
∴
CO |
BO |
AO |
CO |
1 |
2 |
∵∠AOC=∠BOC=90°,
∴△AOC∽△COB,
∴∠1=∠OBC,
∴∠1+∠2=90°,
即∠ACB=90°;
(2)①当△P1CB∽△OCA时,
∴∠P1CB=∠ACO,∠P1BC=∠CAO,
∴P1C∥BO,P1B∥CO,
∴四边形P1BOC是平行四边形,
又∵∠COB=90°,
∴平行四边形P1BOC是矩形,
∴P1B=CO=2,P1C=BO=4,
∴P1点坐标为:(4,2),
②过点P2,作P2D⊥BO于点D,
当△P2CB∽△ACO时,
∴
P2B |
AO |
BC |
CO |
∵AO=1,CO=2,BC=
22+42 |
5 |
∴
P2B |
1 |
2
| ||
2 |
解得:P2B=
5 |
∵∠CBP2=90°,
∴∠CBO+∠P2BD=90°,
∵∠BP2D+∠P2BD=90°,
∴∠CBO=∠BP2D,
∵∠COB=∠BDP2,
∴△COB∽△BDP2,
∴△AOC∽△BDP2,
∴
BD |
P2D |
AO |
CO |
1 |
2 |
设BD=x,则DP 2=2x,
∴x 2+(2x) 2=(
5 |
解得:x=1,
∴BD=1,DP 2=2,
∴P2点坐标为:(5,2),
③当△P3CB∽△AOC时,
由②同理即可得出:P3点坐标为:(1,4),
④过点P4,作P4M⊥CO于点M,P4N⊥BO于点N,
当△P4CB∽△OAC时,
∴
P4C |
AO |
BC |
AC |
∴
P4C |
1 |
2
| ||
|
∴P4C=2,
则P4B=4,
设P4的坐标为:(x,y),
∴MC=y-2,P4M=x,BN=4-x,P4N=y,
∴
|
可得y=2x,
∴(2x)2+(4-x)2=16,
解得:x=
8 |
5 |
故y=
16 |
5 |
P4的坐标为:(
8 |
5 |
16 |
5 |
⑤当△AOC∽△BCP5时,P5的坐标是:(4,10);
⑥当△AOC∽△P6BC,时,P6的坐标是:(8,8);
综上所述P点坐标为:(4,2),(5,2),(1,4),(
8 |
5 |
16 |
5 |
看了如图,在平面直角坐标系中,A(...的网友还看了以下:
.平面直角坐标系中,平行四边形ABCD如图放置,点A、C的坐标分别为(3,0)(-1,0)平面直角 2020-05-16 …
关于坐标系平移的1个题在直角坐标系中平移坐标轴,把原点O(0,0)移到(2,-5),点A在新坐标系 2020-06-06 …
在平面直角坐标系中,有三个点的坐标分别是A(-4,0),B(0,6),C(1,2).(1)证明:A 2020-06-14 …
在线求指导:一架托盘天平游码标尺一架托盘天平游码标尺上的最小刻度值是0.2g,标尺上的最大示数是5 2020-06-25 …
1.在空间直角坐标系中,过点P(2,1,1)且与直线{(大括号)x-yz1=0,3x-2y-2z1 2020-07-20 …
(2014•揭阳二模)如图所示,竖直平面xOy内存在水平向右的匀强电场,场强大小E=10N/c,在 2020-08-02 …
(2011•沧州三模)如图所示,在光滑水平面上有一xOy平面坐标系,在坐标系内有一质量m=1.0×1 2020-11-12 …
这是某单位的平面示意图,已知大门的坐标为(-3,0),花坛的坐标为(0,-1).(1)根据上述条件建 2020-12-08 …
使用5T的卷扬机(电机功率为15KW,提升速度为9-11米/分钟)及6倍绳滑轮,在0平面上拖动重90 2020-12-15 …
一道北大自招题,求详细解析答案对的有追加20分坐标系o-xyz坐标系内,xoy平面系内0坐标系o-x 2020-12-21 …