早教吧作业答案频道 -->数学-->
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0试证在(0,1)内存在点c使cf'(c)+f(c)=0
题目详情
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0试证在(0,1)内存在点c使cf'(c)+f(c)=0
▼优质解答
答案和解析
对y=xf(x)求导,再把初始条件带入即可
dy/dt=f(x)+xf(x)
设c在(0,1)内,带入上式可得
cf'(c)+f(c)=0
dy/dt=f(x)+xf(x)
设c在(0,1)内,带入上式可得
cf'(c)+f(c)=0
看了设f(x)在[0,1]上连续,...的网友还看了以下:
已知,如图∠A=∠C,CD丄AB于D,交AE于F,试断定ΔAEB的形状,并说明你的结论的合理性.AD 2020-03-30 …
设函数f(x)在0,1上连续,在(0,1)内可导,且3∫f(x)dx=f(0),(上限为1,下限为 2020-05-14 …
导游服务的枢纽作用主要表现在( )。 A.承上启下B.促进交流C.连接内外D.协调左右 2020-05-19 …
高数!求详解设f(x)在[0,1]上连续,在(0,1)内二阶可导,且f(0)=f(1)=0,证明: 2020-07-29 …
一个导数问题的理解设f(x)在[a,b]上连续,在(a,b)内可导且不恒于常数,f(a)=f(b) 2020-07-31 …
求解一题证明题!高数设f(x)与g(x)在[a,b]上连续,在(a,b)上可导,f(a)=f(b) 2020-08-01 …
设f(x)在[a,b]上连续,在(a,b)内二阶可导,又设连接(a,f(a)),(b,f(b))两点 2020-11-03 …
1)设f(x)在[a,b]上可微,且f(a)=f(b)=0,证明:在(a,b)内存在一点ξ,使f'( 2020-12-28 …
求助一道数学题~设f(x)在〔0,1〕上连续,在(0,1)内可导,且f(0)=0,f(1)=1,a、 2020-12-28 …
证明:设f(x)在[0,1]上连续,在(0,1)内存在二阶导数,且f(0)=f(1)=0,设F(x) 2020-12-28 …