早教吧作业答案频道 -->数学-->
难题!可以证明,对任意的n属于N+,有(1+2+……+n)^2=1^3+2^3+……n^3成立,下面尝试推广该命题可以证明,对任意的n属于N+,有(1+2+……+n)^2=1^3+2^3+……n^3成立,下面尝试推广该命题设数列{an}每项均非零,
题目详情
难题!可以证明,对任意的n属于N+,有(1+2+……+n)^2=1^3+2^3+……n^3成立,下面尝试推广该命题
可以证明,对任意的n属于N+,有(1+2+……+n)^2=1^3+2^3+……n^3成立,下面尝试推广该命题
设数列{an}每项均非零,且对任意的n属于N+有(1+2+……+n)^2=1^3+2^3+……n^3成立,试找出一个无穷数列{an},使得a2012=-2011,则这样的数列{an}的一个通项公式是?
题目错了应是设数列{an}每项均非零,且对任意的n属于N+有(a1+a2+……+an)^2=a1^3+a2^3+……an^3成立
可以证明,对任意的n属于N+,有(1+2+……+n)^2=1^3+2^3+……n^3成立,下面尝试推广该命题
设数列{an}每项均非零,且对任意的n属于N+有(1+2+……+n)^2=1^3+2^3+……n^3成立,试找出一个无穷数列{an},使得a2012=-2011,则这样的数列{an}的一个通项公式是?
题目错了应是设数列{an}每项均非零,且对任意的n属于N+有(a1+a2+……+an)^2=a1^3+a2^3+……an^3成立
▼优质解答
答案和解析
1,看不出条件与结论有何联系
2,an=-n+1
2,an=-n+1
看了 难题!可以证明,对任意的n属...的网友还看了以下:
当n取正整数时,定义N(n)表示n的最大奇因数.如N(1)=1,N(2)=1,N(3)=3,N(4 2020-05-13 …
N个点在一条直线上,用S表示连接每两点的线段的总数,那么有(1)n=2时,s=1=2分之1×2;( 2020-05-23 …
额.要对哦嗯.3x的m次方减12x的m+1次方2的n+2次方减2×2的n次方/2×2的n+3次方( 2020-06-07 …
这例题是无穷级数比较审敛法中做,求解释.题目如下:∑(n=1∞)2n+1/(n+1)(n+2)(n 2020-06-22 …
1.已知数列{a(n)}满足a(n)a(n+1)a(n+2)a(n+3)=24,且a1=1a2=2 2020-07-09 …
观察下面个式:(x-1)(x+1)=x^2-1;(x-1)(x^2+x+1)=x^3-1;(x-1 2020-07-22 …
为什么真数大于0所以m-2>0,n-1>0则√[(m-2)(n-1)]≤[(m-2)+(n-1)] 2020-07-30 …
[(p+q)^3]^5除以[(p+q)^7]^2=,()^n=4^na^2nb^3n{-[-(-1) 2020-11-01 …
用洛必达法则求极限lim(x→∞)n(3^(1/n)-1).我的解是lim(n→∞)n(3^(1/n 2020-11-07 …
几个数学难题,求助!1.已知a-b=4,ab+m^-6m+13=0,则ab+m的值为()2.计算(1 2020-12-24 …