早教吧 育儿知识 作业答案 考试题库 百科 知识分享

函数y=sinx^2在(0,∞)上不一致连续,怎么证明?

题目详情
函数y=sinx^2在(0,∞)上不一致连续,怎么证明?
▼优质解答
答案和解析
对ε0 =1/2 > 0,对任意的 δ >0,取 k =1/(32πδ^2),x1= sqrt(2kπ),x2 = sqrt(2kπ+π/2) ∈(-∞,+∞),有
 |x1 - x2| = sqrt(2kπ+π/2) - sqrt(2kπ)
= (π/2)/[sqrt(2kπ+π/2) + sqrt(2kπ)]
 < (π/2)/[2*sqrt(2kπ)] =……< δ,

 |sin[(x1)^2] - sin[(x2)^2]| = |sin(2k π) - sin (2kπ+π/2)| = 1 > ε0,
此即证得f(x)=sin(x^2)在(‐∞,+∞)上是非一致连续.