早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2011•延平区质检)如图,菱形ABCD中,AC、BD相交于点O,CA=8,DB=4,点E在AB上,过O作OF⊥OE于O,OF=12OE,连接FB.(1)求证:∠AEO=∠BFO(2)当点E在线段AB上运动时,请写出一个反映BE2,BF2,E

题目详情
(2011•延平区质检)如图,菱形ABCD中,AC、BD相交于点O,CA=8,DB=4,点E在AB上,过O作OF⊥OE于O,OF=
1
2
OE,连接FB.
(1)求证:∠AEO=∠BFO
(2)当点E在线段AB上运动时,请写出一个反映BE2,BF2,EF2之间关系的等式,并说明理由;
(3)当点E在线段AB的延长线上运动时,如图,此时(2)中的结论是否依然成立?若成立,请加以证明;若不成立,请说明理由.
▼优质解答
答案和解析
(1)证明:∵四边形ABCD为菱形,CA=8,DB=4,
∴AC⊥BD,OA=4,OB=2,
∴∠AOB=90°,
而OF⊥OE,
∴∠EOF=90°,
∴∠AOE=∠BOF,
又∵OF=
1
2
OE,
∴OA:OB=OE:OF=2:1,
∴△OAE∽△OBF,
∴∠AEO=∠BFO;

(2)BE2+BF2=EF2.理由如下:
由(1)中△OAE∽△OBF,
∴∠OAE=∠OBF,
∴∠ABO+∠OBF=90°,
∴△BEF为直角三角形,
∴BE2+BF2=EF2

(3)BE2+BF2=EF2依然成立.理由如下:
∵四边形ABCD为菱形,CA=8,DB=4,
∴AC⊥BD,OA=4,OB=2,
而OF⊥OE,
∴∠EOF=90°,
∴∠AOE=∠BOF,
又∵OF=
1
2
OE,
∴OA:OB=OE:OF=2:1,
∴△OAE∽△OBF,
∴∠OAE=∠OBF,
∴△BEF为直角三角形,
∴BE2+BF2=EF2