早教吧作业答案频道 -->数学-->
在学习勾股定理时,我们学会运用图(I)验证它的正确性;图中大正方形的面积可表示为:(a+b)2,也可表示为:c2+4•(12ab),即(a+b)2=c2+4•(12ab)由此推出勾股定理a2+b2=c2,这种根据
题目详情
在学习勾股定理时,我们学会运用图(I)验证它的正确性;图中大正方形的面积可表示为:
(a+b)2,也可表示为:c2+4•(
ab),
即(a+b)2=c2+4•(
ab)由此推出勾股定理a2+b2=c2,这种根据图形可以极简单地直观推论或验证数学规律和公式的方法,简称“无字证明”.
(1)请你用图(II)(2002年国际数字家大会会标)的面积表达式验证勾股定理(其中四个直角三角形全等);
(2)请你用(III)提供的图形进行组合,用组合图形的面积表达式验证(x+y)2=x2+2xy+y2;
(3)请你自己设计图形的组合,用其面积表达式验证:(x+p)(x+q)=x2+px+qx+pq=x2+(p+q)x+pq.
(a+b)2,也可表示为:c2+4•(
1 |
2 |
即(a+b)2=c2+4•(
1 |
2 |
(1)请你用图(II)(2002年国际数字家大会会标)的面积表达式验证勾股定理(其中四个直角三角形全等);
(2)请你用(III)提供的图形进行组合,用组合图形的面积表达式验证(x+y)2=x2+2xy+y2;
(3)请你自己设计图形的组合,用其面积表达式验证:(x+p)(x+q)=x2+px+qx+pq=x2+(p+q)x+pq.
▼优质解答
答案和解析
(1)大正方形的面积为:c2,中间空白部分正方形面积为:(b-a)2;
四个阴影部分直角三角形面积和为:4×
ab;
由图形关系可知:大正方形面积=空白正方形面积+四直角三角形面积,即有:c2=(b-a)2+4×
ab=b2-2ab+a2+2ab=a2+b2;
(2)如图示:大正方形边长为(x+y)所以面积为:(x+y)2,它的面积也等于两个边长分别为x,y和两个长为x宽为y的矩形面积之和,即x2+2xy+y2
所以有:(x+y)2=x2+2xy+y2成立;
(3)如图示:大矩形的长、宽分别为(x+p),(x+q),则其面积为:(x+p)•(x+q),从图形关系上可得大矩形为一个边长为x的正方形和三个小矩形构成的则其面积又可表示为:x2+px+qx+pq,则有:(x+p)(x+q)=x2+px+qx+pq=x2+(p+q)x+pq.
四个阴影部分直角三角形面积和为:4×
1 |
2 |
由图形关系可知:大正方形面积=空白正方形面积+四直角三角形面积,即有:c2=(b-a)2+4×
1 |
2 |
(2)如图示:大正方形边长为(x+y)所以面积为:(x+y)2,它的面积也等于两个边长分别为x,y和两个长为x宽为y的矩形面积之和,即x2+2xy+y2
所以有:(x+y)2=x2+2xy+y2成立;
(3)如图示:大矩形的长、宽分别为(x+p),(x+q),则其面积为:(x+p)•(x+q),从图形关系上可得大矩形为一个边长为x的正方形和三个小矩形构成的则其面积又可表示为:x2+px+qx+pq,则有:(x+p)(x+q)=x2+px+qx+pq=x2+(p+q)x+pq.
看了在学习勾股定理时,我们学会运用...的网友还看了以下:
在学习勾股定理时,我们学会运用图(I)验证它的正确性;图中大正方形的面积可表示为:(a+b)2,也 2020-06-10 …
我们运用图(I)图中大正方形的面积可表示为(a+b)2,也可表示为c2+4×12ab,即(a+b) 2020-06-11 …
我们运用图(Ⅰ)中大正方形的面积可表示为(a+b)2,也可表示为c3+4(12ab),即(a+b) 2020-07-09 …
己知下列四个命题:1很平的桌面是一个平面;2一个平面的面积可以是4m^2;3平面是矩形或平行四边形 2020-07-09 …
在学习勾股定理时,我们学会运用图(I)验证它的正确性;图中大正方形的面积可表示为:(a+b)2,也可 2021-01-22 …
在学习勾股定理时,我们学会运用图(I)验证它的正确性;图中大正方形的面积可表示为:(a+b)2,也可 2021-01-22 …
在学习勾股定理时,我们学会运用图(I)验证它的正确性;图中大正方形的面积可表示为:(a+b)2,也可 2021-01-22 …
(2007•巴中)在学习勾股定理时,我们学会运用图(I)验证它的正确性;图中大正方形的面积可表示为: 2021-01-22 …
我们运用图(Ⅰ)图中大正方形的面积可表示为(a+b)2,也可表示为c2+4×(12ab),即(a+b 2021-01-22 …
我们运用图(I)图中大正方形的面积可表示为(a+b)2,也可表示为c2+4×12ab,即(a+b)2 2021-01-22 …