早教吧作业答案频道 -->数学-->
证明:对于任意正整数n,不等式In(1/n+1)>1/n^2-1/n^3都成立.
题目详情
▼优质解答
答案和解析
证明:令f(x)=ln(1+x)-x²+x³,x∈(0,1],则
f'(x)=1/(1+x)-2x+3x²=[(1-x)²+3x³]/(1+x)>0,
所以,f(x)在(0,1]上单调递增,
因此,f(x)>f(0)=0,
即 ln(1+x)>x²-x³,x∈(0,1]
特别地,取x=1/n,即得
ln(1+1/n)>1/n²-1/n³
f'(x)=1/(1+x)-2x+3x²=[(1-x)²+3x³]/(1+x)>0,
所以,f(x)在(0,1]上单调递增,
因此,f(x)>f(0)=0,
即 ln(1+x)>x²-x³,x∈(0,1]
特别地,取x=1/n,即得
ln(1+1/n)>1/n²-1/n³
看了证明:对于任意正整数n,不等式...的网友还看了以下:
难题!可以证明,对任意的n属于N+,有(1+2+……+n)^2=1^3+2^3+……n^3成立,下 2020-05-14 …
若数列an满足对任意n∈n*只有有限个正整数m使得am<n成立,记这样的m的个数为﹙an﹚*,则得 2020-05-17 …
在数列{an}中,a1=0,且对任意k∈N*,a2k-1.、a2k、a2k-1在数列{an}中,a 2020-05-17 …
时钟的表盘上按标准的方式标着1、2、3、…、11、12这12个数,在其上任意做n个直角扇形,使得每 2020-07-07 …
平面上有n(n>3)个点任意3个点不在同一条直线上,过任意3个点做三角形,一共能做出多少个三角形? 2020-07-14 …
1.已知A,B,C为正数,N是正整数,且f(n)=lg[(An+Bn+Cn)/3],求证:2f(n 2020-07-30 …
求解已知数列{an}的各项均为正数,Sn为其前n项和,对于任意的n∈N+满足关系式2Sn=3an- 2020-07-30 …
已知数列{an}的各项均为正数,Sn为、为其前n项和,对于任意的n∈N*满足关系式2Sn=3an- 2020-07-30 …
已知数列{an}的前n项和为Sn,a1=1,a2=3,S(n+1)=4Sn-3S(n-1)(n≥2, 2020-10-31 …
数列{an}是等比数列,则下列结论中正确的是()A.对任意k∈N*,都有akak+1>0B.对任意k 2020-12-23 …