早教吧 育儿知识 作业答案 考试题库 百科 知识分享

关于x的一元二次方程kx2-(4k+1)x+3k+3=0(k是非零整数).(1)求证:方程有两个不相等的实数根;(2)若方程的两个实数根分别为x1,x2(其中x1<x2),设y=x2-x1-2,判断y是否为变量k的函数

题目详情
关于x的一元二次方程kx2-(4k+1)x+3k+3=0(k是非零整数).
(1)求证:方程有两个不相等的实数根;
(2)若方程的两个实数根分别为x1,x2(其中x1<x2),设y=x2-x1-2,判断y是否为变量k的函数?如果是,请写出函数表达式;若不是,请说明理由.
▼优质解答
答案和解析
(1)∵k是非零整数,
∴△=[-(4k+1)]2-4k(3k+3)=16k2+8k+1-12k2-12k=4k2-4k+1=(2k-1)2>0,
∴方程有两个不相等的实数根;

(2)∵x1+x2=
4k+1
k
,x1•x2=
3k+3
k

∴(x1-x22=(x1+x22-4x1•x2=
(4k+1)2
k2
-
12k+12
k
=
(2k−1)2
k2
=(2-
1
k
2
∵k为整数,
∴2-
1
k
>0,
而x1<x2
∴x2-x1=2-
1
k

∴y=2-
1
k
-2
=-
1
k
(k≠0的整数),
∴y是变量k的函数.
看了关于x的一元二次方程kx2-(...的网友还看了以下: