早教吧作业答案频道 -->其他-->
如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CE⊥AB于E,设∠ABC=α(0°<α<90°)(1)当α=60°时,求CE的长;(2)①在图1中,60°<α<90°,取BC中点G,连接FG,CF,∠EFD=k∠DCF(k为
题目详情
如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CE⊥AB于E,设∠ABC=α(0°<α<90°)
(1)当α=60°时,求CE的长;
(2)①在图1中,60°<α<90°,取BC中点G,连接FG,CF,∠EFD=k∠DCF(k为正整数),试猜想k的值,并证明你的猜想;
②在图2中,0°<α<60°,作CE⊥AB交BA的延长线于E,取BC中点G,连接FG,CF,直接写出∠EFD与∠DCF的等量关系.
(3)在图1中,当60°<α<90°时,当BE为多少时,CE2-CF2取最大,最大值为多少?
(1)当α=60°时,求CE的长;
(2)①在图1中,60°<α<90°,取BC中点G,连接FG,CF,∠EFD=k∠DCF(k为正整数),试猜想k的值,并证明你的猜想;
②在图2中,0°<α<60°,作CE⊥AB交BA的延长线于E,取BC中点G,连接FG,CF,直接写出∠EFD与∠DCF的等量关系.
(3)在图1中,当60°<α<90°时,当BE为多少时,CE2-CF2取最大,最大值为多少?
▼优质解答
答案和解析
(1)∵CE⊥AB,
∴∠CEB=90°,
∵∠B=60°,BC=10,
∴BE=
BC=5,
由勾股定理得:CE=
=5
;
(2)①k=3,
证明:如图,∵AB=5,BC=10,四边形ABCD是平行四边形,
∴AD=BC=10,DC=AB=5,AD∥BC,
∵F、G分别为AD、BC的中点,
∴DF=DC=CG=AF=BG=5,DF∥CG,
∴四边形ABGF和四边形CDFG是平行四边形,
∴FG∥AB∥CD,FG=CD=AB,
∵CE⊥AB,
∴FG⊥CE,
∵G为AB中点,
∴EQ=CQ,
∴EF=FC,
∴∠EFQ=∠CFG,
∵DF=DC=5,
∴∠DFC=∠DCF,
∵FG∥CD,
∴∠CFG=∠DCF,
即∠EFD=3∠DCF,
∴k=3;
②
由①知:∠CFG=∠EFG=∠DCF=∠DFC,
∵∠EFD+∠EFG+∠CFG+∠DFC=360°,
∴∠EFD+3∠DCF=360°;
(3)如图3,过A作AN⊥BC于N,过F作FM⊥BC于M,
∵AD∥BC,
∴AN=FM,AF=MN=5,
∵AN⊥BC,CE⊥AB,
∴∠ANB=∠CEB=90°
∵∠B=∠B,
∴△ANB∽△CEB,
∴
=
=
,
∴BN=
BE=
x,
在Rt△ANB中,由勾股定理得:AN2=FM2=52-(
x)2,
CM=BC-AF-BN=10-5-
x=5-
x,
∴CE2-CF2=(102-x2)-[52-(
x)2+(5-
x)2]=-x2+5x+50,
当x=-
=
时,CE2-CF2取最大值,是
.
∴∠CEB=90°,
∵∠B=60°,BC=10,
∴BE=
1 |
2 |
由勾股定理得:CE=
102−52 |
3 |
(2)①k=3,
证明:如图,∵AB=5,BC=10,四边形ABCD是平行四边形,
∴AD=BC=10,DC=AB=5,AD∥BC,
∵F、G分别为AD、BC的中点,
∴DF=DC=CG=AF=BG=5,DF∥CG,
∴四边形ABGF和四边形CDFG是平行四边形,
∴FG∥AB∥CD,FG=CD=AB,
∵CE⊥AB,
∴FG⊥CE,
∵G为AB中点,
∴EQ=CQ,
∴EF=FC,
∴∠EFQ=∠CFG,
∵DF=DC=5,
∴∠DFC=∠DCF,
∵FG∥CD,
∴∠CFG=∠DCF,
即∠EFD=3∠DCF,
∴k=3;
②
由①知:∠CFG=∠EFG=∠DCF=∠DFC,
∵∠EFD+∠EFG+∠CFG+∠DFC=360°,
∴∠EFD+3∠DCF=360°;
(3)如图3,过A作AN⊥BC于N,过F作FM⊥BC于M,
∵AD∥BC,
∴AN=FM,AF=MN=5,
∵AN⊥BC,CE⊥AB,
∴∠ANB=∠CEB=90°
∵∠B=∠B,
∴△ANB∽△CEB,
∴
AB |
BC |
BN |
BE |
5 |
10 |
∴BN=
1 |
2 |
1 |
2 |
在Rt△ANB中,由勾股定理得:AN2=FM2=52-(
1 |
2 |
CM=BC-AF-BN=10-5-
1 |
2 |
1 |
2 |
∴CE2-CF2=(102-x2)-[52-(
1 |
2 |
1 |
2 |
当x=-
5 |
2×(−1) |
5 |
2 |
225 |
4 |
看了如图,在平行四边形ABCD中,...的网友还看了以下:
定义在R上的奇函数f(x)是增函数,偶函数g(x)在区间零到正无穷左闭右开上的图像与f(x)的图像重 2020-03-31 …
设f(X),g(x)都在[a,b]上连续,且在(a,b)内可微,又对于(a,b)内的x有g'(x) 2020-05-14 …
关于微积分设f(x),g(x)在[a,b]上连续,在(a,b)内可微,证明存在t∈(a,b),使f 2020-06-10 …
设G是一个具有N个结点的简单无向图,N>=3,设G的结点表示N个人,G的边表示他们之间的友好关系, 2020-06-16 …
设f(x),g(x)在[a,b]上连续,且均为严格单增的正函数,证明:存在c€(a,b)使f(b) 2020-06-18 …
设f(X),g(x)都在[a,b]上连续,且在(a,b)内可微分,中值定理设f(X),g(x)都在 2020-07-13 …
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且g(x)不等于0,f(a)g(b)= 2020-07-21 …
设G是一个非空集合,*是定义在G上的一个运算.如果同时满足下述四个条件:(ⅰ)对于∀a,b∈G,都 2020-08-01 …
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0, 2020-08-02 …
离散里面的两道小题,自己答案选对了但是另外几个选项有点模糊,1.设G=为无向图,|V|=7,|E|= 2020-12-14 …