早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设曲线y=xn+1(n∈N*)在点(1,1)处的切线与x轴的交点的横坐标为xn,则log2017x1+log2017x2+…+log2017x2016的值为()A.-log20172016B.-1C.log20172016-1D.1

题目详情

设曲线y=xn+1(n∈N*)在点(1,1)处的切线与x轴的交点的横坐标为xn,则log2017x1+log2017x2+…+log2017x2016的值为(  )

A. -log20172016

B. -1

C. log20172016-1

D. 1

▼优质解答
答案和解析
由y=xn+1,得y′=(n+1)xn,∴y′|x=1=n+1,
∴曲线y=xn+1(n∈N*)在(1,1)处的切线方程为y-1=(n+1)(x-1),
取y=0,得xn=1-
1
n+1
=
n
n+1

∴x1x2…x2016=
1
2
×
2
3
×…×
2016
2017
=
1
2017

则log2017x1+log2017x2+…+log2017x2016=log2017(x1x2…x2016
=log2017
1
2017
=-1.
故选:B.