早教吧作业答案频道 -->数学-->
将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到D′处,折痕为EF.(1)求证:△ABE≌△AD′F;(2)连接CF,判断四边形AECF是什么特殊四边形?证明你的结论.
题目详情
将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到D′处,折痕为EF.
(1)求证:△ABE≌△AD′F;
(2)连接CF,判断四边形AECF是什么特殊四边形?证明你的结论.
(1)求证:△ABE≌△AD′F;
(2)连接CF,判断四边形AECF是什么特殊四边形?证明你的结论.
▼优质解答
答案和解析
(1)证明:由折叠可知:∠D=∠D′,CD=AD′,
∠C=∠D′AE.
∵四边形ABCD是平行四边形,
∴∠B=∠D,AB=CD,∠C=∠BAD.
∴∠B=∠D′,AB=AD′,∠D′AE=∠BAD,
即∠1+∠2=∠2+∠3.
∴∠1=∠3.
在△ABE和△AD′F中
∵
∴△ABE≌△AD′F(ASA).
(2)四边形AECF是菱形.
证明:由折叠可知:AE=EC,∠4=∠5.
∵四边形ABCD是平行四边形,
∴AD∥BC.
∴∠5=∠6.
∴∠4=∠6.
∴AF=AE.
∵AE=EC,
∴AF=EC.
又∵AF∥EC,
∴四边形AECF是平行四边形.
又∵AF=AE,
∴平行四边形AECF是菱形.
∠C=∠D′AE.
∵四边形ABCD是平行四边形,
∴∠B=∠D,AB=CD,∠C=∠BAD.
∴∠B=∠D′,AB=AD′,∠D′AE=∠BAD,
即∠1+∠2=∠2+∠3.
∴∠1=∠3.
在△ABE和△AD′F中
∵
|
∴△ABE≌△AD′F(ASA).
(2)四边形AECF是菱形.
证明:由折叠可知:AE=EC,∠4=∠5.
∵四边形ABCD是平行四边形,
∴AD∥BC.
∴∠5=∠6.
∴∠4=∠6.
∴AF=AE.
∵AE=EC,
∴AF=EC.
又∵AF∥EC,
∴四边形AECF是平行四边形.
又∵AF=AE,
∴平行四边形AECF是菱形.
看了 将平行四边形纸片ABCD按如...的网友还看了以下:
在三角形ABC中,角BAC=90°,DE垂直于DF交AB,AC于E,F,求证:EF的平方=BE的平方 2020-03-30 …
2道几何题已知:P是正方形ABCD对角线BD上一点.PE垂直DC.PF垂直BC.E.F分别为垂足. 2020-05-13 …
设f(x)在[0,1]上连续,在(0,1)内可导,证明:至少存在一点ξ,使得f(1)=2ξf(ξ) 2020-05-14 …
1EF是平行四边形ABCD的对角线AC的垂直平分线,与边AD,BC分别交于点E,F,垂足为O,求证 2020-05-15 …
在平行四边形ABCD中,AB=2BC,E为DC的中点,AE与BC的延长线交于点F.求证∠F=∠FA 2020-05-16 …
已知点P为正方形ABCD外一点,PD⊥平面ABCD,PD=DC,E为PC中点,作EF⊥PB交PB于 2020-05-16 …
如图,平行四边形ABCD的对角线AC的垂直平分线与边AD,BC分别相交于E,F,求证:四边形A如图 2020-05-16 …
正方体ABCD-A1B1C1D1中,求证:(1)B1//平面AB1D1(2)平面AB1D1//平面 2020-07-09 …
在三角形ABC中,角A角B的平分线分别交对边于D,E角C的外角平分线交对边延长线于F,求证:D、E 2020-08-03 …
三角形ABC中,DAE为角A的外角平分线,BD垂直DE于D,CE垂直DE于E,BE和CD交于F,求 2020-08-03 …