早教吧 育儿知识 作业答案 考试题库 百科 知识分享

若x为锐角,求y=(4-3sinx)(4-3cosx)的最值及相应的x值.

题目详情
若x为锐角,求y=(4-3sinx)(4-3cosx)的最值及相应的x值.
▼优质解答
答案和解析
y=f(x)=(4-3sinx)(4-3cosx)=16-12sinx-12cosx+9sinxcosx=16-12(sinx+cosx)+9sinxcosx
设sinx+cosx=t,则sinxcosx=(t^2-1)/2
∵x为锐角,t=sinx+cosx=√2sin(x+π/4),∴t∈(1,√2]
y=f(x)=4-3sinx)(4-3cosx)=16-12t+9(t^2-1)/2=9t^2/2-12t+23/2
对于g(t)=9t^2/2-12t+23/2,开口向上,对称轴为t=4/3.
∴y的最小值为f(4/3)=8-16+23/2=7/2
此时√2sin(x+π/4)=4/3→sin(x+π/4)=2√2/3又x为锐角,∴x=arcsin2√2/3-π/4或x=3π/4-arcsin2√2/3
∵t∈(1,√2],g(1)=4,g(√2)=41/2-12√2,而g(1)>g(√2),∴y无最大值.