早教吧作业答案频道 -->数学-->
已知抛物线y=ax^2+bx+c(a≠2)的对称轴为x=1,与x轴交于A、B两点,与y轴教于C,其中A(-3,0)(1)求这条抛物线的解析式(2)已知在抛物线的对称轴上存在一点P,使得△PBC的周长最小,试求点P的坐标.
题目详情
已知抛物线y=ax^2+bx+c(a≠2)的对称轴为x=1,与x轴交于A、B两点,与y轴教于C,其中A(-3,0)
(1)求这条抛物线的解析式
(2)已知在抛物线的对称轴上存在一点P,使得△PBC的周长最小,试求点P的坐标.
(3)若点D是线段OC上的一个动点(不与点O、C重合),过点D作DE∥PC交x轴与点E,连接PD、PE,设CD的长时m.△PDE的面积为S,求S与m之间的函数关系式.试说明S是否存在最大值,若存在,求最大值:若不存在,请说明理由.
打错了,题目对称轴x=-1
(1)求这条抛物线的解析式
(2)已知在抛物线的对称轴上存在一点P,使得△PBC的周长最小,试求点P的坐标.
(3)若点D是线段OC上的一个动点(不与点O、C重合),过点D作DE∥PC交x轴与点E,连接PD、PE,设CD的长时m.△PDE的面积为S,求S与m之间的函数关系式.试说明S是否存在最大值,若存在,求最大值:若不存在,请说明理由.
打错了,题目对称轴x=-1
▼优质解答
答案和解析
我来帮你解好了
(1)由题意得{b/2a=1,9a-3b+c=0,c=-2,
解得{a=2/3b=4/3c=-2,
∴此抛物线的解析式为y=2/3x2+4/3x-2.
(2)连接AC、BC.
因为BC的长度一定,
所以△PBC周长最小,就是使PC+PB最小.
B点关于对称轴的对称点是A点,AC与对称轴x=-1的交点即为所求的点P.
设直线AC的表达式为y=kx+b,
则{-3k+b=0,b=-2,
解得{k=-2/3,b=-2,
∴此直线的表达式为y=-2/3x-2,
把x=-1代入得y=-4/3
∴P点的坐标为(-1,-4/3).
(3)S存在最大值,
理由:∵DE∥PC,即DE∥AC.
∴△OED∽△OAC.
∴OD/OC=OE/OA,即2-m/2=OE/3,
∴OE=3-3/2m,OA=3,AE=3/2m,
∴S=S△OAC-S△OED-S△AEP-S△PCD
=1/2×3×2-1/2×(3-3/2m)×(2-m)-1/2×3/2m×4/3-1/2×m×1
=-3/4m2+3/2m=-3/4(m-1)2+3/4
∵-3/4<0
∴当m=1时,S最大=3/4.
(1)由题意得{b/2a=1,9a-3b+c=0,c=-2,
解得{a=2/3b=4/3c=-2,
∴此抛物线的解析式为y=2/3x2+4/3x-2.
(2)连接AC、BC.
因为BC的长度一定,
所以△PBC周长最小,就是使PC+PB最小.
B点关于对称轴的对称点是A点,AC与对称轴x=-1的交点即为所求的点P.
设直线AC的表达式为y=kx+b,
则{-3k+b=0,b=-2,
解得{k=-2/3,b=-2,
∴此直线的表达式为y=-2/3x-2,
把x=-1代入得y=-4/3
∴P点的坐标为(-1,-4/3).
(3)S存在最大值,
理由:∵DE∥PC,即DE∥AC.
∴△OED∽△OAC.
∴OD/OC=OE/OA,即2-m/2=OE/3,
∴OE=3-3/2m,OA=3,AE=3/2m,
∴S=S△OAC-S△OED-S△AEP-S△PCD
=1/2×3×2-1/2×(3-3/2m)×(2-m)-1/2×3/2m×4/3-1/2×m×1
=-3/4m2+3/2m=-3/4(m-1)2+3/4
∵-3/4<0
∴当m=1时,S最大=3/4.
看了 已知抛物线y=ax^2+bx...的网友还看了以下:
已知椭圆方程为:x^2+y^2/8=1.(1)是否存在实数k,直线y=kx+2交椭圆于P、Q两点, 2020-05-15 …
对任意正实数k,不等式k^2-4ak-8a>=0与8ak^2-4ak-1标准答案为:1)a0,f( 2020-07-09 …
某成年人的皮肤表面约1.2米^2,在1标准的大气压下,该人的皮肤承受的大气压力为多少牛?它相当于多 2020-07-26 …
如图,直线y=-1/2x+1与x轴、y轴分别交于A,B两点,点C的坐标为(1,2),坐标轴上是否存 2020-07-29 …
在数列{an}中,a1=2,an+1(下标)=λan(下标)+λ^(n+1)+(2-λ)2^n(n 2020-07-29 …
已知数列{an}中,a1=5,an=2a(n-1)+2^n-1(n∈N*且n≥2)(1)求a2,a 2020-07-29 …
在平面直角坐标系中,点A,B的坐标为(0,2)(2,2)1.求三角形AOB的面积2.在X轴上是否存 2020-08-02 …
已知数列{an}的前n项和为Sn,且满足Sn=2an-n若bn=log2(an+1),在bk(k为下 2020-11-19 …
二次函数已知点A(1,a)在抛物线y=x^2上.(1)求A点的坐标.--(1,1)(2)在x轴上是否 2020-12-08 …
大气压强1.上端封闭且装满水的玻璃管倒插在水槽中,若管子侧壁A处开一小孔,则管内的的水将会?2.在1 2020-12-08 …