早教吧 育儿知识 作业答案 考试题库 百科 知识分享

1已知向量a=(1+cosa,sina),向量b=(1-cosb,sinb),向量c=(1,0),a属于(0,π)b属于(π,2π)向量a与c夹角为Q1,向量b与c夹角为Q2,Q1-Q2=π/6,求sin (a-b)/82.tan^2*tan(30-a)+tan^2*tan(60-a)+tan(30-a)*tan(60-a)

题目详情
1已知向量a=(1+cosa,sina),向量b=(1-cosb,sinb),向量c=(1,0),a属于(0,π)b属于(π,2π)向量a与c夹角为Q1,向量b与c夹角为Q2,Q1-Q2=π/6,求sin (a-b)/8
2.tan^2*tan(30-a)+tan^2*tan(60-a)+tan(30-a)*tan(60-a)
▼优质解答
答案和解析
|a|=√[(1+cosa)^2+(sina)^2]
=√(2+2cosa)=√(4cos(a/2)^2)=2cos(a/2)
因为0