早教吧作业答案频道 -->数学-->
已知函数f(x)=x2+ax(x≠0,常数a∈R).(1)讨论函数f(x)的奇偶性,并说明理由;(2)若函数f(x)在[2,+∞)上为增函数,求实数a的取值范围.
题目详情
已知函数f(x)=x2+
(x≠0,常数a∈R).
(1)讨论函数f(x)的奇偶性,并说明理由;
(2)若函数f(x)在[2,+∞)上为增函数,求实数a的取值范围.
a |
x |
(1)讨论函数f(x)的奇偶性,并说明理由;
(2)若函数f(x)在[2,+∞)上为增函数,求实数a的取值范围.
▼优质解答
答案和解析
(1)当a=0时,f(x)=x2
对任意x∈(-∞,0)∪(0,+∞),有f(-x)=(-x)2=x2=f(x),
∴f(x)为偶函数.
当a≠0时,f(x)=x2+
(x≠0,常数a∈R),
取x=±1,得f(-1)+f(1)=2≠0,
f(-1)-f(1)=-2a≠0,
∴f(-1)≠-f(1),f(-1)≠f(1).
∴函数f(x)既不是奇函数也不是偶函数.
(2)设2≤x1<x2,
f(x1)-f(x2)=x21+
−x22−
=
[x1x2(x1+x2)-a],
要使函数f(x)在x∈[2,+∞)上为增函数,
必须f(x1)-f(x2)<0恒成立.
∵x1-x2<0,x1x2>4,
即a<x1x2(x1+x2)恒成立.
又∵x1+x2>4,∴x1x2(x1+x2)>16,
∴a的取值范围是(-∞,16].
对任意x∈(-∞,0)∪(0,+∞),有f(-x)=(-x)2=x2=f(x),
∴f(x)为偶函数.
当a≠0时,f(x)=x2+
a |
x |
取x=±1,得f(-1)+f(1)=2≠0,
f(-1)-f(1)=-2a≠0,
∴f(-1)≠-f(1),f(-1)≠f(1).
∴函数f(x)既不是奇函数也不是偶函数.
(2)设2≤x1<x2,
f(x1)-f(x2)=x21+
a |
x1 |
a |
x2 |
(x1−x2) |
x1x2 |
要使函数f(x)在x∈[2,+∞)上为增函数,
必须f(x1)-f(x2)<0恒成立.
∵x1-x2<0,x1x2>4,
即a<x1x2(x1+x2)恒成立.
又∵x1+x2>4,∴x1x2(x1+x2)>16,
∴a的取值范围是(-∞,16].
看了 已知函数f(x)=x2+ax...的网友还看了以下:
公文议论的三个基本要素是()。A.论点、论据、论证B.依据、事件、评论C.原因、证明、结果D.论点、 2020-05-29 …
等差数列,若S奇表示奇数项的和,S偶表示偶数项的和,公差为d,则①当项数为偶数2n时,S偶-S奇= 2020-06-26 …
有序偶的括号问题看离散数学有序偶(a,b)是这么表示的,数据结构中的二元组是这么表示的,离散数学的 2020-06-26 …
若线性规划的原问题有无穷多最优解,则其对偶问题也一定有无穷多最优解;F网上大部分是T,看到个博客里 2020-06-27 …
对偶理论在整数规划中有哪些具体的应用?可以解决哪类典型整数规划问题?简要叙述思想即可. 2020-11-11 …
运筹学线性规划minf=2x1+3x2+5x3+2x4+3x5x1+x2+2x3+运筹学线性规划mi 2020-12-15 …
指出下列说法中有错误的一项是A.论点和论据的关系,是被证明和证明的关系。B.从议论文采取的主要论证方 2020-12-23 …
数列中,n什么时候要分奇偶讨论,为什么? 2020-12-28 …
数列{an}中a1=1,an?an+1=4^n,求{an}的前n项和Sn.答案说n要分奇偶讨论,为什 2020-12-28 …
怎样记数列的一些公式?如等差数列项数为2nS偶-S奇=ndS奇/S偶=a(n)/a(n+1)项数为2 2021-02-09 …