早教吧 育儿知识 作业答案 考试题库 百科 知识分享

在正方形ABCD中,点P在BC上,且BP=3PC,Q是CD的中点,证明AQ⊥QP,AQ=2QP,AQ平分∠DAP

题目详情
在正方形ABCD中,点P在BC上,且BP=3PC,Q是CD的中点,证明AQ⊥QP,AQ=2QP,AQ平分∠DAP
▼优质解答
答案和解析

如图,本题重点,是用对应边成比例证明△ADQ∽△QCP∽△AQP.
AD:QC=DQ:PC=2,所以RT△ADQ∽RT△QCP,得到AQ:QP=2
∠1'+∠2=∠1+∠2=RT∠,所以AQ⊥QP

AD:DQ=AQ:QP=2,所以RT△ADQ∽RT△AQP,得到∠1''=∠1