早教吧作业答案频道 -->数学-->
已知向量m=(2cosx,根号3cosx-sinx),n=(sin(x+派/6),sinx),且满足f(x)=m·n.(1)求函数y=f(x)的单调递增区间;(2)设三角形ABC的内角A满足f(A)=2,a、b、c分别为角A、B、C所对的边,且向量AB·向量AC=根号3,求边BC的最
题目详情
已知向量m=(2cosx,根号3cosx-sinx),n=(sin(x+派/6),sinx),且满足f(x)=m·n.(1)求函数y=f(x)的单调递增区间;(2)设三角形ABC的内角A满足f(A)=2,a、b、c分别为角A、B、C所对的边,且向量AB·向量AC=根号3,求边BC的最小值.
▼优质解答
答案和解析
向量m=(2cosx,√3cosx-sinx),n=(sin(x+π/6),sinx),且满足f(x)=m·n
f(x)=m·n
=2√3sinxcosx+cos²x-sin²x
=√3sin2x+cos2x
=2sin(2x+π/6)
(1).由2kπ-π/2≤2x+π/6≤2kπ+π/2,k∈Z,得:
kπ-π/3≤x≤kπ+π/6,k∈Z,
∴(x)的单调递增区间为:[kπ-π/3,kπ+π/6],(k∈Z)
(2).∵f(A)=2sin(2A+π/6)=2
∴sin(2A+π/6)=1
又∵0
f(x)=m·n
=2√3sinxcosx+cos²x-sin²x
=√3sin2x+cos2x
=2sin(2x+π/6)
(1).由2kπ-π/2≤2x+π/6≤2kπ+π/2,k∈Z,得:
kπ-π/3≤x≤kπ+π/6,k∈Z,
∴(x)的单调递增区间为:[kπ-π/3,kπ+π/6],(k∈Z)
(2).∵f(A)=2sin(2A+π/6)=2
∴sin(2A+π/6)=1
又∵0
看了 已知向量m=(2cosx,根...的网友还看了以下: