早教吧作业答案频道 -->数学-->
向量a=(cosx+sinx,根2cosx),b=(cosx-sinx,根2sinx),f(x)=a×b 若2x2-派x小于等于第二问是若2x2-派x小于等于0,求函数f(x)的值域
题目详情
向量a=(cosx+sinx,根2cosx),b=(cosx-sinx,根2sinx),f(x)=a×b 若2x2-派x小于等于
第二问是若2x2-派x小于等于0,求函数f(x)的值域
第二问是若2x2-派x小于等于0,求函数f(x)的值域
▼优质解答
答案和解析
向量a=(cosx+sinx,√(2cosx)),b=(cosx-sinx,√(2sinx)),f(x)=a×b 若2x2-πx≤0,【是不是 2x^2-πx≤0 】求函数f(x)的值域.
|向量a|=√[(cosx+sinx)^2+(2cosx)]=
=√[1+2sinxcosx+2cosx],
|向量b|=√[(cosx-sinx)^2+(2sinx)]=
=√[1-2sinxcosx+2sinx],
f(x)=a×b,
f(x)仍然是向量,方向是垂直于向量a和向量b所形成的平面、且服从右手法则.
con(向量a,向量b)=[|向量a|点乘|向量b|]/{[|向量a|][|向量b|]}=
=(cosx+sinx)(cosx-sinx)+(2cosx)(2sinx)/{√[1+2sinxcosx+2cosx]√[1-2sinxcosx+2sinx]}=
=[con^2x-sin^2x+4sinxconx]/√{[1+2sinxcosx+2cosx][1-2sinxcosx+2sinx]},
sin(向量a,向量b)=√{1-[(con^2x-sin^2x+4sinxconx)^2/[(1+2sinxcosx+2cosx)(1-2sinxcosx+2sinx)]};
|向量f(x)|=|向量a||向量b|sin(向量a,向量b)=
=√[1+2sinxcosx+2cosx]√[1-2sinxcosx+2sinx]sin(向量a,向量b)=
=√[1+2sinxcosx+2cosx-2sinxcosx-4sin^2xcos^2x-4sinxcon^2x+2sinx+4sin^2xconx+4sinxconx]sin(向量a,向量b)=
=√[1+2sinx+2cosx+4sinxcosx-4sinxcon^2x+4sin^2xconx-4sin^2xcos^2x])√{1-[(con^2x-sin^2x+4sinxconx)^2/[(1+2sinxcosx+2cosx)(1-2sinxcosx+2sinx)]},
若2x^2-πx≤0,
(√2x-π/√2)^2≤π^2/2,
-π/√2≤√2x-π/√2≤π/√2,
0≤√2x≤√2π,
0≤x≤π,
函数f(x)的值域:
|向量f(x)|=√[1+2sinx+2cosx+4sinxcosx-4sinxcon^2x+4sin^2xconx-4sin^2xcos^2x]√{1-[(con^2x-sin^2x+4sinxconx)^2/[(1+2sinxcosx+2cosx)(1-2sinxcosx+2sinx)]}=
=√{[1+2sinx+2cosx+4sinxcosx-4sinxcon^2x+4sin^2xconx-4sin^2xcos^2x]-(con^2x-sin^2x+4sinxconx)^2}=
=√{1+2sinx+2cosx+4sinxcosx-4sinxcon^2x+4sin^2xconx-4sin^2xcos^2x-(con^4x+sin^4x+16sin^2xcon^2x-2sin^2xcon^2x+8sinxcon^3x-8sin^3xconx)}=
=√{1+2sinx+2cosx+4sinxcosx-4sinxcon^2x+4sin^2xconx-4sin^2xcos^2x-con^4x-sin^4x-16sin^2xcon^2x+2sin^2xcon^2x-8sinxcon^3x+8sin^3xconx}=
=√{1+2sinx+2cosx+4sinxcosx-4sinxcon^2x+4sin^2xconx-4sin^2xcos^2x-con^4x-sin^4x-16sin^2xcon^2x+2sin^2xcon^2x-8sinxcon^3x+8sin^3xconx},
把上式整理、化简,
因为在 0≤x≤π,
0≤sinx≤1,-1≤conx≤1,
0≤sin^2x≤1,0≤sin^3x≤1,0≤sin^4x≤1,
0≤con^2x≤1,-1≤con^3x≤1,0≤con^4x≤1,
故 向量f(x)的标量值可以讨论、并且确定下来.
|向量a|=√[(cosx+sinx)^2+(2cosx)]=
=√[1+2sinxcosx+2cosx],
|向量b|=√[(cosx-sinx)^2+(2sinx)]=
=√[1-2sinxcosx+2sinx],
f(x)=a×b,
f(x)仍然是向量,方向是垂直于向量a和向量b所形成的平面、且服从右手法则.
con(向量a,向量b)=[|向量a|点乘|向量b|]/{[|向量a|][|向量b|]}=
=(cosx+sinx)(cosx-sinx)+(2cosx)(2sinx)/{√[1+2sinxcosx+2cosx]√[1-2sinxcosx+2sinx]}=
=[con^2x-sin^2x+4sinxconx]/√{[1+2sinxcosx+2cosx][1-2sinxcosx+2sinx]},
sin(向量a,向量b)=√{1-[(con^2x-sin^2x+4sinxconx)^2/[(1+2sinxcosx+2cosx)(1-2sinxcosx+2sinx)]};
|向量f(x)|=|向量a||向量b|sin(向量a,向量b)=
=√[1+2sinxcosx+2cosx]√[1-2sinxcosx+2sinx]sin(向量a,向量b)=
=√[1+2sinxcosx+2cosx-2sinxcosx-4sin^2xcos^2x-4sinxcon^2x+2sinx+4sin^2xconx+4sinxconx]sin(向量a,向量b)=
=√[1+2sinx+2cosx+4sinxcosx-4sinxcon^2x+4sin^2xconx-4sin^2xcos^2x])√{1-[(con^2x-sin^2x+4sinxconx)^2/[(1+2sinxcosx+2cosx)(1-2sinxcosx+2sinx)]},
若2x^2-πx≤0,
(√2x-π/√2)^2≤π^2/2,
-π/√2≤√2x-π/√2≤π/√2,
0≤√2x≤√2π,
0≤x≤π,
函数f(x)的值域:
|向量f(x)|=√[1+2sinx+2cosx+4sinxcosx-4sinxcon^2x+4sin^2xconx-4sin^2xcos^2x]√{1-[(con^2x-sin^2x+4sinxconx)^2/[(1+2sinxcosx+2cosx)(1-2sinxcosx+2sinx)]}=
=√{[1+2sinx+2cosx+4sinxcosx-4sinxcon^2x+4sin^2xconx-4sin^2xcos^2x]-(con^2x-sin^2x+4sinxconx)^2}=
=√{1+2sinx+2cosx+4sinxcosx-4sinxcon^2x+4sin^2xconx-4sin^2xcos^2x-(con^4x+sin^4x+16sin^2xcon^2x-2sin^2xcon^2x+8sinxcon^3x-8sin^3xconx)}=
=√{1+2sinx+2cosx+4sinxcosx-4sinxcon^2x+4sin^2xconx-4sin^2xcos^2x-con^4x-sin^4x-16sin^2xcon^2x+2sin^2xcon^2x-8sinxcon^3x+8sin^3xconx}=
=√{1+2sinx+2cosx+4sinxcosx-4sinxcon^2x+4sin^2xconx-4sin^2xcos^2x-con^4x-sin^4x-16sin^2xcon^2x+2sin^2xcon^2x-8sinxcon^3x+8sin^3xconx},
把上式整理、化简,
因为在 0≤x≤π,
0≤sinx≤1,-1≤conx≤1,
0≤sin^2x≤1,0≤sin^3x≤1,0≤sin^4x≤1,
0≤con^2x≤1,-1≤con^3x≤1,0≤con^4x≤1,
故 向量f(x)的标量值可以讨论、并且确定下来.
看了 向量a=(cosx+sinx...的网友还看了以下:
对于和式S=|2x-1|+|3x-1|+|4x-1|+|5x-1|+|6x-1|+|7x-1|+| 2020-04-27 …
设f(x)为已知连续函数,I=t∫st0f(tx)dx,其中s>0,t>0,则I的值()A.依赖于 2020-06-30 …
设函数f(x)=a2x2+x+sex−s(e为自然对数的底数).(s)若x≥0时,f(x)≥0恒成 2020-08-02 …
正余弦综解答题已知三角形abc面积为S,如果2小于等于S小于等于2更号3,且向量AB•向量BC=4 2020-08-02 …
f(x)是给定的连续函数,t>0,则t∫f(tx)dx,积分区间(0->s/t)的值()AA依赖于 2020-08-02 …
对于和式S=|2X-1|+|3X-1|+|4X-1|+|5X-1|+|6X-1|+|7X-1|+|8 2020-10-31 …
VFP编写程序。计算级数s=1+1/2+1/3+1/4+…+1/n,使s的值最接近于2.0且不大于2 2020-11-01 …
如图,矩形ABCD的四个顶点在正三角形EFG的边上.已知△EFG的边长为2,记矩形ABCD的面积为s 2020-11-01 …
设M.N均为整数,记S为形如m+√2n(根号下2)的一切数所构成的集合,对于S中的任意两数X.Y,( 2020-11-19 …
求恰好使s=1+1/2+1/3+…+1/n的值大于10时n的值.分析:"恰好使s的值大于10"意思是 2020-11-24 …