早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知等比数列{an}满足2a1+a3=3a2,且a3+2是a2,a4的等差中项(1)求an(2)若bn=an+log2 1/an(2为角标),Sn=b1+b2+b3+.+bn,求使Sn-2^n+1 +47<0成立的正整数n的最小值.(1)问以求出 为2^n

题目详情
已知等比数列{an}满足2a1+a3=3a2,且a3+2是a2,a4的等差中项
(1)求an(2)若bn=an+log2 1/an(2为角标),Sn=b1+b2+b3+.+bn,求使Sn-2^n+1 +47<0成立的正整数n的最小值.
(1)问以求出 为2^n
▼优质解答
答案和解析
因为an=2^n,所以 log2 1/an(2为角标)= -n
所以 bn=2^n-n
Sn=2-1+2^2-2+2^3-3+...+2^n-n =(2+2^2+2^3+...+2^n)-(1+2+3+...+n)
= 2^(n+1)-2-(1+n)*n/2
Sn-2^(n+1)+47=2^(n+1)-2-(1+n)*n/2-2^(n+1)+47
=45-(1+n)*n/290
(n+1/2)^2>(90*4+1)/4 =(19/2)^2
n>(19+1)/2=20 因此最小整数为21