早教吧 育儿知识 作业答案 考试题库 百科 知识分享

在四棱锥P-ABCD中,底面ABCD是矩形,已知AB=3,AD=2,PA=2,PD=2根号2,角PAB=60度.(1)证明AD垂直平面PAB (2)求异面直线PC与AD所成角的大小 (3)求二面角P-BD-A的的大小

题目详情
在四棱锥P-ABCD中,底面ABCD是矩形,已知AB=3,AD=2,PA=2,PD=2根号2,角PAB=60度.
(1)证明AD垂直平面PAB
(2)求异面直线PC与AD所成角的大小
(3)求二面角P-BD-A的的大小
▼优质解答
答案和解析
(1)∵在三角形PAB中,AB=PA=2,PD=2√2,由勾股定理逆定理,
∴△PAB是等腰RT△,
AD⊥PA,
∵四边形ABCD是矩形,AD⊥AB,
AB∩PA=A,
∴AD⊥平面PAB.
(2)、在平面PAB上作PE⊥AB,垂足E,连结CE,
由上所述,∵AD⊥平面PAB,PE∈平面PAB,
∴AD⊥PE,
∵AB∩AD=A,
∴PE⊥平面ABCD,
〈PAE=60度,
PE=PA*sin60°,PE=√3,AE=PA/2=1,
BE=AB-AE=3-1=2,
EB=BC=2,EC=2√2,
根据勾股定理,PC=√(EC^2+PE^2)= √11,
PB=√(PE^2+BE^2)=√7,
在三角形PBC中,根据余弦定理,
PB^2=PC^2+BC^2-2*PC*BC*coscos∵AD‖BC,
∴BC与PC所成角BC与PC所成角为arccos(2/√11).
3、PE⊥平面ABCD,△PBD在平面ABCD上的射影是△PBE,
BD=√13,在三角形PBD中,根据余弦定理,
BD^2=PB^2+PD^2-2PB*PD*coscossinS△PBD=PB*PD*sinS△DEB=(2*3/2)*2/3=2,
设二面角P-BD-A平面角为α,S△PBD*cosα= S△DEB,
cosα=2/(7√22/11)=√22/7,
α=arccos(√22/7)
∴二面角P-BD-A为arccos((√22/7).