早教吧作业答案频道 -->数学-->
就差这题了:一道简单的椭圆数学问题.高中生都可以进.已知椭圆C:3分之(x平方)+2分之(y平方)=1,若AC,BD为椭圆C的两条相互垂直的弦,垂足为右焦点F2,求四边形ABCD的面积的最小值.好嘛。= =
题目详情
就差这题了:一道简单的椭圆数学问题.高中生都可以进.
已知椭圆C:3分之(x平方)+2分之(y平方)=1,若AC,BD为椭圆C的两条相互垂直的弦,垂足为右焦点F2,求四边形ABCD的面积的最小值.
好嘛。= =。个就是你了。
均值不等式神马的看不懂。但记得老师讲过。
不多说了,寒假作业数学最后一小题了,快快杀青。
已知椭圆C:3分之(x平方)+2分之(y平方)=1,若AC,BD为椭圆C的两条相互垂直的弦,垂足为右焦点F2,求四边形ABCD的面积的最小值.
好嘛。= =。个就是你了。
均值不等式神马的看不懂。但记得老师讲过。
不多说了,寒假作业数学最后一小题了,快快杀青。
▼优质解答
答案和解析
96/25
先设B D的坐标..
然后设BD方程:y=k(x-1),与椭圆联立得到一个方程,然后算Δ=48(k²+1)
接着用韦达,算出x1+x2,x1x2,代入弦长公式可得|BD|=[4根号3(k²+1)]/(3k²+2)
由于AC丄BD,因此AC的长度直接可以写出来,方法是把|BD|中的k全部换成-1/k
可得|AC|=[4根号3(k²+1)]/(2k²+3)
四边形ABCD的面积可分为两个三角形即ABD和BDC.而刚好AC⊥BD.所以S=0.5|AC||BD|=.=24(k²+1)²/(2k²+3)(3k²+2)≥24(k²+1)²/[(5k²+5)/2]²(这里打的有点乱.其实就是均值不等式)=96/25
当BD斜率为0或BD⊥x轴时.可求得S=4
综上,面积最小值为96/25
..这道题我做过,貌似07年全国卷?
- -嗯.查了一下这个是对的
先设B D的坐标..
然后设BD方程:y=k(x-1),与椭圆联立得到一个方程,然后算Δ=48(k²+1)
接着用韦达,算出x1+x2,x1x2,代入弦长公式可得|BD|=[4根号3(k²+1)]/(3k²+2)
由于AC丄BD,因此AC的长度直接可以写出来,方法是把|BD|中的k全部换成-1/k
可得|AC|=[4根号3(k²+1)]/(2k²+3)
四边形ABCD的面积可分为两个三角形即ABD和BDC.而刚好AC⊥BD.所以S=0.5|AC||BD|=.=24(k²+1)²/(2k²+3)(3k²+2)≥24(k²+1)²/[(5k²+5)/2]²(这里打的有点乱.其实就是均值不等式)=96/25
当BD斜率为0或BD⊥x轴时.可求得S=4
综上,面积最小值为96/25
..这道题我做过,貌似07年全国卷?
- -嗯.查了一下这个是对的
看了 就差这题了:一道简单的椭圆数...的网友还看了以下:
1(集合)A组9题B组2,咪咪and棕棕,09年的人教版教科书12页3题怎样答,求的是A∪B和A∩ 2020-04-05 …
八年级数学题,第一小题完成就行,拜托了! 如图,△ABC在平面直角坐标系中,A(0,2√3),B( 2020-05-16 …
数学问题在平面直角坐标系xoy中.A(-1,0)B(0,2)C(2,0)(一)求过点C且与AB垂直 2020-06-04 …
阅读下题的解题过程:已知a、b、c为三角形ABC的三边,且满足a^2c^2-b^2c^2=a^4- 2020-06-08 …
已知下列命题:1在△ABC中∠A=∠C-∠B则△ABC为直角三角形2在△ABC中若∠A:∠B:∠C 2020-07-04 …
初一数学题关于平面直角坐标在方格纸上有A,B两点,若以点B为原点建立平面直角坐标系,则点A的坐标为 2020-08-01 …
速求帮忙解以下八道数学题,一、根据下列条件,确定直线方程,并化为一般直线方程.1.倾斜角为30度,过 2020-11-05 …
在平面直角坐标系xOy中,直线l1:y=k1x+b过A(0,-3),B(5,2),直线l2:y=k2 2020-11-10 …
给这几个命题的证明,1.若f(x+a)=f(b-x),对于x∈R恒成立,则y=f(x)的图象关于直线 2020-11-11 …
·提N道数学题,都是超简单的,若三角形ABC的三边A,B,C满足(A-B)(A^2+B^2-C^2) 2020-11-20 …