早教吧 育儿知识 作业答案 考试题库 百科 知识分享

求x²y"+xy'=1通解

题目详情
▼优质解答
答案和解析
答:
x^2y''+xy'=1
xy''+y'=1/x
(xy')'=1/x
积分得:
xy'=lnx+C
y'=(lnx+C) /x
积分得:
y=∫ (lnx+C) /x dx
=∫(lnx+C) d(lnx)
=(1/2)*(lnx)^2+C*lnx+K
所以:
y=(1/2)*(ln|x|)^2+C*ln|x|+K,C和K为任意实数