早教吧作业答案频道 -->数学-->
已知函数f(x)=eax,g(x)=-x2+bx+c(a,b,c∈R),且曲线y=f(x)与曲线y=g(x)在它们的交点(0,c)处具有公共切线.设h(x)=f(x)-g(x).(Ⅰ)求c的值,及a,b的关系式;(Ⅱ)求函
题目详情
已知函数f(x)=eax,g(x)=-x2+bx+c(a,b,c∈R),且曲线y=f(x)与曲线y=g(x)在它们的交点(0,c)处具有公共切线.设h(x)=f(x)-g(x).
(Ⅰ)求c的值,及a,b的关系式;
(Ⅱ)求函数h(x)的单调区间;
(Ⅲ)设a≥0,若对于任意x1,x2∈[0,1],都有|h(x1)-h(x2)|≤e-1,求a的取值范围.
(Ⅰ)求c的值,及a,b的关系式;
(Ⅱ)求函数h(x)的单调区间;
(Ⅲ)设a≥0,若对于任意x1,x2∈[0,1],都有|h(x1)-h(x2)|≤e-1,求a的取值范围.
▼优质解答
答案和解析
(I)∵函数f(x)=eax,g(x)=-x2+bx+c,
∴函数f′(x)=aeax,g′(x)=-2x+b.
曲线y=f(x)与曲线y=g(x)在它们的交点(0,c)处具有公共切线,
∴
,即
,
∴c=1,a=b;…(4分)
(II)由已知,h(x)=f(x)-g(x)=eax+x2-ax-1.
∴h′(x)=aeax+2x-a,
设F(x)=aeax+2x-a,所以F′(x)=a2eax+2,
∀a∈R,F′(x)>0,所以h′(x)在(-∞,+∞)上为单调递增函数.…(6分)
由(I)得,f′(0)=g′(0)所以h′(0)=f′(0)-g′(0)=0,即0是h′(x)的零点.
所以,函数h(x)的导函数h′(x)有且只有一个零点0.…(7分)
所以h′(x)及h(x)符号变化如下,
所以函数h′(x)的单调递减区间为(-∞,0),单调递增区间为(0,+∞).…(9分)
(III)由(II)知当x∈[0,1]时,h(x)是增函数.
对于任意x1,x2∈[0,1],都有|h(x1)-h(x2)|≤e-1,等价于h(x)max-h(x)min=h(1)-h(0)=ea-a≤e-1,
等价于当a≥0时,G(a)=ea-a-(e-1)≤0,
∵G′(a)=ea-1≥0,
∴G(a)在[0,+∞)上是增函数,
又G(1)=0,所以a∈[0,1].…(13分)
∴函数f′(x)=aeax,g′(x)=-2x+b.
曲线y=f(x)与曲线y=g(x)在它们的交点(0,c)处具有公共切线,
∴
|
|
∴c=1,a=b;…(4分)
(II)由已知,h(x)=f(x)-g(x)=eax+x2-ax-1.
∴h′(x)=aeax+2x-a,
设F(x)=aeax+2x-a,所以F′(x)=a2eax+2,
∀a∈R,F′(x)>0,所以h′(x)在(-∞,+∞)上为单调递增函数.…(6分)
由(I)得,f′(0)=g′(0)所以h′(0)=f′(0)-g′(0)=0,即0是h′(x)的零点.
所以,函数h(x)的导函数h′(x)有且只有一个零点0.…(7分)
所以h′(x)及h(x)符号变化如下,
x | (-∞,0) | 0 | (0,+∞) |
h(x) | - | 0 | + |
h′(x) | ↘ | 极小值 | ↗ |
(III)由(II)知当x∈[0,1]时,h(x)是增函数.
对于任意x1,x2∈[0,1],都有|h(x1)-h(x2)|≤e-1,等价于h(x)max-h(x)min=h(1)-h(0)=ea-a≤e-1,
等价于当a≥0时,G(a)=ea-a-(e-1)≤0,
∵G′(a)=ea-1≥0,
∴G(a)在[0,+∞)上是增函数,
又G(1)=0,所以a∈[0,1].…(13分)
看了 已知函数f(x)=eax,g...的网友还看了以下:
初三有关反比例函数图形变换的题目,但我没看懂函数y=2/x与函数y=-2/x具有某种关系,因此已知 2020-04-08 …
规定对于一个一次函数,如果它的自变量x与函数值y满足m≤x≤n时有m≤y≤n,我们称此函数为为区间 2020-05-13 …
求证:函数y=f(a+x)与函数y=f(a-x)关于x=0对称,其中x∈R求证:函数y=f(a+x 2020-05-16 …
大哥大姐们帮忙算个简单计算题啊已知y=f(x)是二次函数,方程f(x)=0又两个实数跟,且f'(x 2020-06-05 …
已知f(x)为偶函数,且f(-1-x)=f(1-x),当x∈[0,1]时,f(x)=-x+1,(1 2020-06-26 …
已知函数f(x)与函数y=(a>0)的图象关于直线y=x对称.(1)试用含a的代数式表示函数f(x 2020-07-20 …
已知二次函数y=ax2+bx+c(a≠0)自变量x与函数值y之间满足下列数量关系:x-4-3-2- 2020-07-25 …
定义:对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n,有m≤y≤n,我们就称此函数是在 2020-07-30 …
给这几个命题的证明,1.若f(x+a)=f(b-x),对于x∈R恒成立,则y=f(x)的图象关于直线 2020-11-11 …
(1)函数f(x+a)与函数f(a-x)的图像关于对称,(2)函数f(x-a)与函数f(a-x)的图 2020-11-18 …