早教吧 育儿知识 作业答案 考试题库 百科 知识分享

列向量组与行向量组的秩的区别?列向量组的秩是不是向量无关的最大列数?行向量组的秩是不是向量无关的最大行数?书上说矩阵的秩等于其列向量组的秩和其行向量组的秩,但是其行、列的秩

题目详情
列向量组与行向量组的秩的区别?
列向量组的秩是不是向量无关的最大列数?行向量组的秩是不是向量无关的最大行数?书上说矩阵的秩等于其列向量组的秩和其行向量组的秩,但是其行、列的秩肯定相等吗?请一一解答,
▼优质解答
答案和解析
如一个m*n(m矩阵的秩等于列向量组的秩也等于行向量组的秩的证明
1.定义
矩阵的秩:指非零子式的最高阶数
向量组的秩:指最大无关组中向量的个数
2.证明
先证明矩阵的秩等于列向量组的秩
设矩阵A=[a_11,…,a_1n;…; a_m1,…,a_mn],Rank(A)=r
则有某个r阶子式不等于,无妨设det(a_11,…,a_1r;…;a_r1,…,a_rr)≠0
下证a1,a2,…,ar( aj=(a_1j,…,a_mj)’,j=1,…,r)线性无关
若a1*x1+…,+ar*xr=0 (1)

[a_11*x1+…,+a_1r*xr=0
……
a_r1*x1+…,+a_rr*xr=0
a_r+1,1*x1+…,+a_r+1,r*xr=0
……]
则由det(a_11,…,a_1r;…;a_r1,…,a_rr)≠0知前r个方程组成的方程组只有零解,从而整个方程组只有零解,即(1)只有零解,因此a1,a2,…,ar线性无关
下证A中任意r+1个列向量线性相关,
采用反证法,假设存在某r+1个列向量线性无关,无妨设a1,a2,…,ar,a_r+1线性无关,则a1*x1+…,+ar*xr+a_r+1*x_r+1=0只有零解,令A1=[a1,…,ar,a_r+1],则Rank(A1)=r+1,从而A1有一个r+1阶子式不等于零,而此子式也是A中的一个子式,这就说明A中存在不为零的r+1阶子式,这与Rank(A)=r矛盾.故假设错误,从而A中任意r+1个列向量线性相关,故a1,a2,…,ar为A的一个最大无关组,从而列向量组的秩序为r.这就证明了矩阵的秩等于列向量组的秩
现说明矩阵的秩也等于行向量组的秩
因Rank(A’)=Rank(A),Rank(A’)=A’中列向量组的秩,而A’的列向量组即为A的行向量组,故有A行向量组的秩=Rank(A)