早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设曲线上的一点P(x,y)处的法线与x轴的交点为Q,且线段PQ被y轴平分,试写出该曲线所满足的微分方程.

题目详情
设曲线上的一点P(x,y)处的法线与x轴的交点为Q,且线段PQ被y轴平分,试写出该曲线所满足的微分方程.
▼优质解答
答案和解析
设曲线方程为y=f(x)
则切线在P(x,y)处的切线的的斜率为y'=f'(x)
法线的斜率为k=-1/y'
在点(x0,y0)处法线的方程为y-y0=-(x-x0)/[y'0] //y'0代表y'在x0处的值
该法线与x轴的交点为(y0y'0+x0,0)
由题意点(x0,y0)与点(y0y'0+x0,0)的中点坐标为((y0y'0+2x0)/2,y0/2)
由题意得 (y0y'0+2x0)/2=0
即 y0y'0+2x0=0
从而得到该曲线满足的微分方程为 yy'+2x=0