早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知:如图,在正方形ABCD中,E、F分别是BC、DC边上的点,且AE⊥EF于点E.(1)延长EF交正方形ABCD的外角平分线CP于点P,试判断AE与EP的大小关系,并说明理由;(2)在AB边上是否存在一点M,使得四边

题目详情
已知:如图,在正方形ABCD中,E、F分别是BC、DC边上的点,且AE⊥EF于点E.
(1)延长EF交正方形ABCD的外角平分线CP于点P,试判断AE与EP的大小关系,并说明理由;
(2)在AB边上是否存在一点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由.
▼优质解答
答案和解析
很高兴为您解答!
分析:(1)在AB上取BH=BE,连接EH,根据已知及正方形的性质利用ASA判定△AHE≌△ECP,从而得到AE=EP;
(2)先证△DAM≌△ABE,进而可得四边形DMEP是平行四边形.
(1)结论:AE=PE.理由如下:(1分)
在AB上截取BN=BE.(2分)
∵四边形ABCD为正方形,∴AB=BC,∠B=90°.
∴AN=EC,∠1=∠2=45°.
∴∠4=135°.
∵CP为正方形ABCD的外角平分线,
∴∠PCE=135°.∴∠PCE=∠4.
∵∠AEP=90°,∴∠BEA+∠3=90°.
∵∠BAE+∠BEA=90°,∴∠3=∠BAE.
∴△ANE≌△ECP.
∴AE=EP.(3分)
存在点M使得四边形DMEP是平行四边形.(4分)
理由如下:过点D作DM∥PE,交AE于点K,交AB于点M,连接ME、DP.(5分)
∴∠AKD=∠AEP=90°.
∵∠BAD=90°,∴∠ADM+∠AMD=90°,∠MAK+∠AMD=90°.
∴∠ADM=∠MAK.
∵AD=AB,∠B=∠DAB,
∴△AMD≌△BEA.(6分)
∴DM=AE.∴DM=EP.
∴四边形DMEP为平行四边形.(7分)
很高兴为您解答,【数学的奥义】团队为您答题.请点击下面的【选为满意回答】按钮,如果有其他需要帮助的题目,您可以求助我.