早教吧作业答案频道 -->数学-->
如图,直角梯形ABCD中,AB∥DC,∠DAB=90°,AD=2DC=4,AB=6.动点M以每秒1个单位长的速度,从点A沿线段AB向点B运动;同时点P以相同的速度,从点C沿折线C-D-A向点A运动.当点M到达点B时,两点同时停止运动.
题目详情
如图,直角梯形ABCD中,AB∥DC,∠DAB=90°,AD=2DC=4,AB=6.动点M以每秒1个单位长的速度,从点A沿线段AB向点B运动;同时点P以相同的速度,从点C沿折线C-D-A向点A运动.当点M到达点B时,两点同时停止运动.过点M作直线l∥AD,与折线A-C-B的交点为Q.点M运动的时间为t(秒).
(1)点M在线段AB上运动时,是否可以使得以C、P、Q为顶点的三角形为直角三角形,若可以,请直接写出t的值(不需解题步骤);若不可以,请说明理由.
(2)若△PCQ的面积为y,请求y关于出t 的函数关系式及自变量的取值范围;
第一个问 最好有
(1)点M在线段AB上运动时,是否可以使得以C、P、Q为顶点的三角形为直角三角形,若可以,请直接写出t的值(不需解题步骤);若不可以,请说明理由.
(2)若△PCQ的面积为y,请求y关于出t 的函数关系式及自变量的取值范围;
第一个问 最好有
▼优质解答
答案和解析
(1)∵AB∥DC,
∴Rt△AQM∽Rt△CAD.
∴ QM/AM=AD/CD
即 QM/0.5=4/2
∴QM=1.
(2)t=1或5/3或4.
(3)当0<t<2时,点P在线段CD上,设直线l交CD于点E
由(1)可得 QM/AM=AD/CD
即 QM/t=4/2
∴QM=2t.
∴QE=4-2t.
∴S△PQC= 0.5PC•QE=-t²+2t,
即y=-t²+2t,
当t>2时,过点C作CF⊥AB交AB于点F,
交PQ于点H.PA=DA-DP=4-(t-2)=6-t.
由题意得,BF=AB-AF=4.
∴CF=BF,
∴∠CBF=45°.
∴QM=MB=6-t,
∴QM=PA.
∴四边形AMQP为矩形.
∴PQ∥AB.CH⊥PQ,HF=AP=6-t
∴CH=AD-HF=t-2,
∴S△PQC= PQ•CH=½t²-t
即y =½t²-t
综上所述y=-t²+2t(0<t≤2),
或y =½t²-t(2<t<6).
∴Rt△AQM∽Rt△CAD.
∴ QM/AM=AD/CD
即 QM/0.5=4/2
∴QM=1.
(2)t=1或5/3或4.
(3)当0<t<2时,点P在线段CD上,设直线l交CD于点E
由(1)可得 QM/AM=AD/CD
即 QM/t=4/2
∴QM=2t.
∴QE=4-2t.
∴S△PQC= 0.5PC•QE=-t²+2t,
即y=-t²+2t,
当t>2时,过点C作CF⊥AB交AB于点F,
交PQ于点H.PA=DA-DP=4-(t-2)=6-t.
由题意得,BF=AB-AF=4.
∴CF=BF,
∴∠CBF=45°.
∴QM=MB=6-t,
∴QM=PA.
∴四边形AMQP为矩形.
∴PQ∥AB.CH⊥PQ,HF=AP=6-t
∴CH=AD-HF=t-2,
∴S△PQC= PQ•CH=½t²-t
即y =½t²-t
综上所述y=-t²+2t(0<t≤2),
或y =½t²-t(2<t<6).
看了 如图,直角梯形ABCD中,A...的网友还看了以下:
已知两条异面直线BA,DC与两平行平面α,β分别交于B,A和D,C,M,N分别是AB,CD的中点. 2020-04-05 …
如图,在平行四边形ABCD中,AD=2AB=6cm,BE是∠ABC的角平分线,点M从点E出发,沿E 2020-05-13 …
1stOpt能做灵敏度分析吗?y=B*(1-exp(-c*x))^m-D*(1-exp(-k*(( 2020-07-23 …
设集合I=C={复数}R={实数}M={纯虚数}那么()A.R∪M=CB.R∩M={0} 2020-08-01 …
急一道数学题已知a/b=c/d=e/f=m/n(b+d+f+...+n≠0)(1)试说明:a+c+e 2020-11-01 …
如图所示是行星m绕恒星M运动情况示意图,下列说法正确的是().A.速度最大点是A点B.速度最小点是C 2020-11-10 …
(2014•营口)如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点 2020-11-26 …
m路B+树是一棵m路平衡索引树,除了根节点之外的节点中关键字最多最少分别为?假设函数U(x)为对小数 2020-12-17 …
为什么是c,不是进行了赋值运算嘛5、设a、b、c、d、m、n均为int型变量,且a=5、b=6、为什 2020-12-31 …
关于化学平衡常数和浓度积的问题化学平衡常数:c^p(C)*c^q(D)/C^m(A)*c^n(B)浓 2021-01-22 …