早教吧作业答案频道 -->数学-->
若函数F(X),G(X)分别是R上的奇函数,偶函数,且满足F(X)-G(X)=3^x则F(2),G(0),F(3)的大小
题目详情
若函数F(X),G(X)分别是R上的奇函数,偶函数,且满足F(X)-G(X)=3^x
则F(2),G(0),F(3)的大小
则F(2),G(0),F(3)的大小
▼优质解答
答案和解析
若函数F(X),G(X)分别是R上的奇函数,偶函数,且满足F(X)-G(X)=3^x
f(x),g(x)分别是R上的奇函数,偶函数
f(-x)=-f(x)
g(-x)=g(x)
f(-x)-g(-x)=-f(x)-g(x)=e^(-x)
f(x)-g(x)=e^x
相加
-2g(x)=e^x+e^(-x)
g(x)=-[e^x+e^(-x)]/2
f(x)=[e^x-e^(-x)]/2
g(0)=-1
f(2)=(e^2-1/e^2)/2=(e^4-1)/2e^2>0
f(3)=(e^3-1/e^3)/2=(e^6-1)/2e^3>0
f(2)/f(3)=(e^4-1)*e^3/(e^6-1)*e^2
=(e^2+1)(e^2-1)*e/(e^2-1)(e^4+e^2+1)
=(e^3+e)/(e^4+e^2+1)
(e^3+e)/(e^4+e^2+1)-1=[(e^3-e^4)+(e-e^2)-1]/(e^4+e^2+1)
f(x),g(x)分别是R上的奇函数,偶函数
f(-x)=-f(x)
g(-x)=g(x)
f(-x)-g(-x)=-f(x)-g(x)=e^(-x)
f(x)-g(x)=e^x
相加
-2g(x)=e^x+e^(-x)
g(x)=-[e^x+e^(-x)]/2
f(x)=[e^x-e^(-x)]/2
g(0)=-1
f(2)=(e^2-1/e^2)/2=(e^4-1)/2e^2>0
f(3)=(e^3-1/e^3)/2=(e^6-1)/2e^3>0
f(2)/f(3)=(e^4-1)*e^3/(e^6-1)*e^2
=(e^2+1)(e^2-1)*e/(e^2-1)(e^4+e^2+1)
=(e^3+e)/(e^4+e^2+1)
(e^3+e)/(e^4+e^2+1)-1=[(e^3-e^4)+(e-e^2)-1]/(e^4+e^2+1)
看了 若函数F(X),G(X)分别...的网友还看了以下:
如下题.已知f(x)=(e^x-e^-x)/2,则下列正确的是()A.奇函数,在R上为增函数B.偶函 2020-03-30 …
函数f(x)在定义域R上不是常数函数,且f(x)满足对任意x∈R,有f(4+x)=f(4-x),f 2020-05-13 …
高一必修一数学难题(奇偶)已知f(x)在R上是偶函数,在R上是奇函数的g(x)过点(-1.1),( 2020-05-16 …
函数f(x)在定义域R上不是常数函数,且f(x)满足条件:对任意x∈R,都有f(2+x)=f(2- 2020-06-03 …
函数f(x)是定义在R上的奇函数,且f(x-1)为偶函数,当x∈[0,1]时,f(x))=x^1/ 2020-06-09 …
设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是().设函数f(x)和g( 2020-07-08 …
已知幂函数f(x)=x一r-r一-9(一∈z)为偶函数,且在区间(7,+∞)e是单调递减函数.(的 2020-07-12 …
基本初等函数1.定义在R上的偶函数f(x)和奇函数g(X)满足f(x)+g(X)=e^x,求g(x 2020-08-02 …
设f(X)是定义在R上的一个函数,则f(x)=f(x)-f(-x)在R上一定是()A奇函数B偶函数C 2020-12-07 …
.本题满分12分)已知函数y=f(x)是R上的偶函数,且x≥0时,f(x)=(12)x-1.本题满分 2020-12-13 …