早教吧 育儿知识 作业答案 考试题库 百科 知识分享

求圆心在直线l1:x-y-1=0上,且与直线l2:4x+3y+14=o相切,又在直线l3:3x+4y+10=0上截得弦长为6的圆的方程

题目详情
求圆心在直线l1:x-y-1=0上,且与直线l2:4x+3y+14=o相切,又在直线l3:3x+4y+10=0上截得弦长为6的圆的方程
▼优质解答
答案和解析
首先,圆心在直线l1:x-y-1=0上,则不妨设圆心坐标为(a,a-1)
因为圆与直线l2:4x+3y+14=0相切,则由点到线的距离公式得出
半径R=D=[4a+3(a-1)+14]/5=(7a+11)/5
圆在直线l3:3x+4y+10=0上截得弦长为6,则由点到线的距离公式得出
圆心到l3的距离d=[3a+4(a-1)+10]/5=(7a+6)/5
由此,你画一个图观察,过圆心做l3的垂线,弦长被一分为二,可以得出
弦长L一半的平方+d的平方=R的平方.
所以可以得出关系式:(6/2)^2+[7a+6/5]^2=[7a+11/5]^2
解上式,得a=2
所以圆心坐标为(2,1),半径R=5
圆的方程为(x-2)^2+(y-1)^2=25
花了些工夫打出来,请尊重我的劳动