早教吧作业答案频道 -->数学-->
求圆心在直线l1:x-y-1=0上,且与直线l2:4x+3y+14=o相切,又在直线l3:3x+4y+10=0上截得弦长为6的圆的方程
题目详情
求圆心在直线l1:x-y-1=0上,且与直线l2:4x+3y+14=o相切,又在直线l3:3x+4y+10=0上截得弦长为6的圆的方程
▼优质解答
答案和解析
首先,圆心在直线l1:x-y-1=0上,则不妨设圆心坐标为(a,a-1)
因为圆与直线l2:4x+3y+14=0相切,则由点到线的距离公式得出
半径R=D=[4a+3(a-1)+14]/5=(7a+11)/5
圆在直线l3:3x+4y+10=0上截得弦长为6,则由点到线的距离公式得出
圆心到l3的距离d=[3a+4(a-1)+10]/5=(7a+6)/5
由此,你画一个图观察,过圆心做l3的垂线,弦长被一分为二,可以得出
弦长L一半的平方+d的平方=R的平方.
所以可以得出关系式:(6/2)^2+[7a+6/5]^2=[7a+11/5]^2
解上式,得a=2
所以圆心坐标为(2,1),半径R=5
圆的方程为(x-2)^2+(y-1)^2=25
花了些工夫打出来,请尊重我的劳动
因为圆与直线l2:4x+3y+14=0相切,则由点到线的距离公式得出
半径R=D=[4a+3(a-1)+14]/5=(7a+11)/5
圆在直线l3:3x+4y+10=0上截得弦长为6,则由点到线的距离公式得出
圆心到l3的距离d=[3a+4(a-1)+10]/5=(7a+6)/5
由此,你画一个图观察,过圆心做l3的垂线,弦长被一分为二,可以得出
弦长L一半的平方+d的平方=R的平方.
所以可以得出关系式:(6/2)^2+[7a+6/5]^2=[7a+11/5]^2
解上式,得a=2
所以圆心坐标为(2,1),半径R=5
圆的方程为(x-2)^2+(y-1)^2=25
花了些工夫打出来,请尊重我的劳动
看了 求圆心在直线l1:x-y-1...的网友还看了以下:
在直角坐标系平面内,A、B两点分别在X正半轴、y正半轴上运动,线段AB在直角坐标系平面内,A、B两 2020-05-16 …
在直角三角形ABC中,两条直角边长分别是3cm、4cm,斜边长为5cm,若分别以一边所.快,急.在 2020-05-17 …
如图,已知圆C:x2+y2+10x+10y=0,点A(0,6).(1)求圆心在直线y=x上,经过点 2020-07-09 …
在()里填上‘’>〞‘’<〞或=9分之10-3分之10()3分之9-2分之9在()里填上‘’>〞‘ 2020-07-18 …
(1)画一点P,过点P画直线AB,在直线AB外画一点Q.(2)点A在直线点l上,点B和点C都(1) 2020-07-20 …
△ABC中B是椭圆在x轴上方的顶点是双曲线位于x轴下方的准线当AC在直线上运动时.(1)求△ABC 2020-07-31 …
数学题在平面直角坐标系中,O为坐标原点,已知向量a=(1,2),点A(1,0),B(cosX,T) 2020-08-01 …
在直角三角形ABC中,C=90°,B=30°,AB=4,M是AB的中点,将三角形ACM沿CM翻折成 2020-08-02 …
如图,在直角坐标系中,点O是坐标原点,四边形OABC是平行四边形,点A的坐标为(14,0),点B的 2020-08-03 …
如图,在△ABC中,AB=8,AC=6,BC=10.线段BC所在直线以每秒2个单位的速度沿与其垂直的 2021-01-09 …