早教吧作业答案频道 -->其他-->
BP神经网络高手来5.1,3.5,1.4,0.2,Iris-setosa4.9,3.0,1.4,0.2,Iris-setosa4.7,3.2,1.3,0.2,Iris-setosa4.6,3.1,1.5,0.2,Iris-setosa5.0,3.6,1.4,0.2,Iris-setosa5.4,3.9,1.7,0.4,Iris-setosa4.6,3.4,1.4,0.3,Iris-setosa5.0,3.4,1.5,0.2,Iris-setosa4.4,2.9,1.4
题目详情
BP神经网络高手来
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
4.6,3.1,1.5,0.2,Iris-setosa
5.0,3.6,1.4,0.2,Iris-setosa
5.4,3.9,1.7,0.4,Iris-setosa
4.6,3.4,1.4,0.3,Iris-setosa
5.0,3.4,1.5,0.2,Iris-setosa
4.4,2.9,1.4,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
5.4,3.7,1.5,0.2,Iris-setosa
4.8,3.4,1.6,0.2,Iris-setosa
4.8,3.0,1.4,0.1,Iris-setosa
4.3,3.0,1.1,0.1,Iris-setosa
5.8,4.0,1.2,0.2,Iris-setosa
5.7,4.4,1.5,0.4,Iris-setosa
5.4,3.9,1.3,0.4,Iris-setosa
5.1,3.5,1.4,0.3,Iris-setosa
5.7,3.8,1.7,0.3,Iris-setosa
5.1,3.8,1.5,0.3,Iris-setosa
5.4,3.4,1.7,0.2,Iris-setosa
5.1,3.7,1.5,0.4,Iris-setosa
4.6,3.6,1.0,0.2,Iris-setosa
5.1,3.3,1.7,0.5,Iris-setosa
4.8,3.4,1.9,0.2,Iris-setosa
5.0,3.0,1.6,0.2,Iris-setosa
5.0,3.4,1.6,0.4,Iris-setosa
5.2,3.5,1.5,0.2,Iris-setosa
5.2,3.4,1.4,0.2,Iris-setosa
4.7,3.2,1.6,0.2,Iris-setosa
4.8,3.1,1.6,0.2,Iris-setosa
5.4,3.4,1.5,0.4,Iris-setosa
5.2,4.1,1.5,0.1,Iris-setosa
5.5,4.2,1.4,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
5.0,3.2,1.2,0.2,Iris-setosa
5.5,3.5,1.3,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
4.4,3.0,1.3,0.2,Iris-setosa
5.1,3.4,1.5,0.2,Iris-setosa
5.0,3.5,1.3,0.3,Iris-setosa
4.5,2.3,1.3,0.3,Iris-setosa
4.4,3.2,1.3,0.2,Iris-setosa
5.0,3.5,1.6,0.6,Iris-setosa
5.1,3.8,1.9,0.4,Iris-setosa
4.8,3.0,1.4,0.3,Iris-setosa
5.1,3.8,1.6,0.2,Iris-setosa
4.6,3.2,1.4,0.2,Iris-setosa
5.3,3.7,1.5,0.2,Iris-setosa
5.0,3.3,1.4,0.2,Iris-setosa
以上为样本 要去一半为训练样本 一半为验证样本 写出个MATLAB程序(请用trainbp)
期望输出为1就行
偏差的选择理由,激励函数的选择理由,隐含层神经元个数的选择理由及每个参数的意义)
自己研究了几天了 实在是弄不出来了
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
4.6,3.1,1.5,0.2,Iris-setosa
5.0,3.6,1.4,0.2,Iris-setosa
5.4,3.9,1.7,0.4,Iris-setosa
4.6,3.4,1.4,0.3,Iris-setosa
5.0,3.4,1.5,0.2,Iris-setosa
4.4,2.9,1.4,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
5.4,3.7,1.5,0.2,Iris-setosa
4.8,3.4,1.6,0.2,Iris-setosa
4.8,3.0,1.4,0.1,Iris-setosa
4.3,3.0,1.1,0.1,Iris-setosa
5.8,4.0,1.2,0.2,Iris-setosa
5.7,4.4,1.5,0.4,Iris-setosa
5.4,3.9,1.3,0.4,Iris-setosa
5.1,3.5,1.4,0.3,Iris-setosa
5.7,3.8,1.7,0.3,Iris-setosa
5.1,3.8,1.5,0.3,Iris-setosa
5.4,3.4,1.7,0.2,Iris-setosa
5.1,3.7,1.5,0.4,Iris-setosa
4.6,3.6,1.0,0.2,Iris-setosa
5.1,3.3,1.7,0.5,Iris-setosa
4.8,3.4,1.9,0.2,Iris-setosa
5.0,3.0,1.6,0.2,Iris-setosa
5.0,3.4,1.6,0.4,Iris-setosa
5.2,3.5,1.5,0.2,Iris-setosa
5.2,3.4,1.4,0.2,Iris-setosa
4.7,3.2,1.6,0.2,Iris-setosa
4.8,3.1,1.6,0.2,Iris-setosa
5.4,3.4,1.5,0.4,Iris-setosa
5.2,4.1,1.5,0.1,Iris-setosa
5.5,4.2,1.4,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
5.0,3.2,1.2,0.2,Iris-setosa
5.5,3.5,1.3,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
4.4,3.0,1.3,0.2,Iris-setosa
5.1,3.4,1.5,0.2,Iris-setosa
5.0,3.5,1.3,0.3,Iris-setosa
4.5,2.3,1.3,0.3,Iris-setosa
4.4,3.2,1.3,0.2,Iris-setosa
5.0,3.5,1.6,0.6,Iris-setosa
5.1,3.8,1.9,0.4,Iris-setosa
4.8,3.0,1.4,0.3,Iris-setosa
5.1,3.8,1.6,0.2,Iris-setosa
4.6,3.2,1.4,0.2,Iris-setosa
5.3,3.7,1.5,0.2,Iris-setosa
5.0,3.3,1.4,0.2,Iris-setosa
以上为样本 要去一半为训练样本 一半为验证样本 写出个MATLAB程序(请用trainbp)
期望输出为1就行
偏差的选择理由,激励函数的选择理由,隐含层神经元个数的选择理由及每个参数的意义)
自己研究了几天了 实在是弄不出来了
▼优质解答
答案和解析
当然可以了!我硕士三年研究的都是神经网路!告诉你哈,想要模拟你说的那两个函数真是太简单了!
同时学习多少个都是可以的!先给一个输入数据集合x=[.],然后把你说的那两个函数分别设为两个目标函数就可以了,最后出一张图或者出两张图分别显示这两个函数的学习情况.但是我建议你分别编两个程序去学习这两个函数,这样程序收敛的快!效果是一样的.只要输入数据集合被指定为同一组就是了.
另外,两个隐层的神经网络?太复杂了!看你提问的内容,应该不是硕博士吧!我硕士期间都一直用的是单隐层,可以学习很多复杂的问题,关键是你的参数要给的好!双隐层来学习你这两个函数,浪费了,而且反而更加难收敛,因为参数更多,你如果给的不准,学习效果就不好.
同时学习多少个都是可以的!先给一个输入数据集合x=[.],然后把你说的那两个函数分别设为两个目标函数就可以了,最后出一张图或者出两张图分别显示这两个函数的学习情况.但是我建议你分别编两个程序去学习这两个函数,这样程序收敛的快!效果是一样的.只要输入数据集合被指定为同一组就是了.
另外,两个隐层的神经网络?太复杂了!看你提问的内容,应该不是硕博士吧!我硕士期间都一直用的是单隐层,可以学习很多复杂的问题,关键是你的参数要给的好!双隐层来学习你这两个函数,浪费了,而且反而更加难收敛,因为参数更多,你如果给的不准,学习效果就不好.
看了 BP神经网络高手来5.1,3...的网友还看了以下:
请帮我算下这个数独的答案,{4,2,0,0,9,0,0,0,0}{5,0,7,3,0,0,0,0, 2020-04-26 …
lingo里没有向量的概念,只有集合的概念.那怎么样才能利用集合进行类似于向量的计算呢?比如a1= 2020-05-13 …
我需要一句英文的广告词要4个单词开头分别是iris是介绍冰激凌(雪糕)的广告词 2020-05-13 …
BP神经网络高手来5.1,3.5,1.4,0.2,Iris-setosa4.9,3.0,1.4,0 2020-05-17 …
下列工具,属于网络监听工具的是()。A.SnifferB.NmapC.X-ScanD.IRIS 2020-05-24 …
下列工具,属于扫描工具的是()。A.SnifferB.NmapC.X-ScanD.IRIS 2020-05-24 …
以下对几种网络管理工具/命令的描述中,错误的是(50)。A.常见的网络数据监听工具有SnifferP 2020-05-26 …
以下哪项工具不适合用来做网络监听()。A.snifferB.WebscanC.WindumpD.D- 2020-05-26 …
R语言>pairs(iris[,1:4])>pairs(iris[1:4])这俩语句画的图一样,那 2020-06-05 …
哪一个英文名好??饿?Frieda弗蕾达Fiona菲欧娜Angela安吉拉Ramona瑞蒙娜Sere 2020-11-05 …