早教吧 育儿知识 作业答案 考试题库 百科 知识分享

高数:曲线x^2+y^2=5,z=x^2-y^2在点(1,2,-3)处的切线方程为曲线x^2+y^2=5,z=x^2-y^2在点(1,2,-3)处的切线方程为

题目详情
高数:曲线x^2+y^2=5,z=x^2-y^2在点(1,2,-3)处的切线方程为
曲线x^2+y^2=5,z=x^2-y^2在点(1,2,-3)处的切线方程为
▼优质解答
答案和解析
x^2+y^2=5
在任意一点的法向:(x,y,0)
z=x^2-y^2 => x^2 - y^2 - z=0
在任意一点法向:(2x,2y,-1)
将(1,2,-3)代入就得到两个法向为:
{1,2,0} 和 {2,-4,-1}
叉乘得到直线的方向向量:{-2,1,-8}
直线过点:(1,2,-3)
用点向式得到方程为:
(x-1)/-2 = y-2 = (z+3)/-8