早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图23一7,O是三角形ABC的内心,过点O作EF平行AB,与AC、BC分别交于点E,F则()

题目详情
如图23一7,O是三角形ABC的内心,过点O作EF平行AB,与AC、BC分别交于点E,F则()
 
▼优质解答
答案和解析
分析:连接OA,OB,由O是△ABC的内心可知OA、OB分别是∠CAB及∠ABC的平分线,故可得出∠EAO=∠OAB,∠ABO=∠FBO,再由EF∥AB可知,∠AOE=∠OAB,∠BOF=∠ABO,故可得出∠EAO=∠AOE,∠FBO=∠BOF,故AE=OE,OF=BF,由此即可得出结论.连接OA,OB,
∵O是△ABC的内心,
∴OA、OB分别是∠CAB及∠ABC的平分线,
∴∠EAO=∠OAB,∠ABO=∠FBO,
∵EF∥AB,
∴∠AOE=∠OAB,∠BOF=∠ABO,
∴∠EAO=∠AOE,∠FBO=∠BOF,
∴AE=OE,OF=BF,
∴EF=AE+BF.
故选C.点评:本题考查的是三角形的内切圆与内心,根据题意作出辅助线,构造出等腰三角形是解答此题的关键.