早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设数列A:a1,a2,…,aN(N≥2).如果对小于n(2≤n≤N)的每个正整数k都有ak<an,则称n是数列A的一个“G时刻”,记G(A)是数列A的所有“G时刻”组成的集合.(Ⅰ)对数列A:-2,2,-1

题目详情
设数列A:a1,a2,…,aN (N≥2).如果对小于n(2≤n≤N)的每个正整数k都有ak<an,则称n是数列A的一个“G时刻”,记G(A)是数列A的所有“G时刻”组成的集合.
(Ⅰ)对数列A:-2,2,-1,1,3,写出G(A)的所有元素;
(Ⅱ)证明:若数列A中存在an使得an>a1,则G(A)≠∅;
(Ⅲ)证明:若数列A满足an-an-1≤1(n=2,3,…,N),则G(A)的元素个数不小于aN-a1
▼优质解答
答案和解析
(Ⅰ)根据题干可得,a1=-2,a2=2,a3=-1,a4=1,a5=3,a1a3不满足条件,3不满足条件,a2>a4不满足条件,4不满足条件,a1,a2,a3,a4,均小于a5,因此5满足条件,因此G(A...