早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知数列{an}满足a1=1,且nan+1-(n+1)an=2n2+2n.(1)求a2,a3;(2)证明数列{ann}是等差数列,并求{an}的通项公式.

题目详情
已知数列{an}满足a1=1,且nan+1-(n+1)an=2n2+2n.
(1)求a2,a3
(2)证明数列{
an
n
}是等差数列,并求{an}的通项公式.
▼优质解答
答案和解析
(1)) 由数列{an}满足a1=1,且nan+1-(n+1)an=2n2+2n.
∴a2-2×1=4,解得a2=6.
2a3-3×6=2×22+2×2,解得a3=15.
(2)证明:∵nan+1-(n+1)an=2n2+2n.
an+1
n+1
-
an
n
=2,
∴数列{
an
n
}是等差数列,首项为1,公差为2.
an
n
=1+2(n-1)=2n-1,
解得an=2n2-n.