早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,等腰直角△ABC中,∠BAC=90°,AB=AC,点M、N在边BC上,且∠MAN=45°,MB=1,CN=3,求MN的长.

题目详情
如图,等腰直角△ABC中,∠BAC=90°,AB=AC,点M、N在边BC上,且∠MAN=45°,MB=1,CN=3,求MN的长.
作业帮
▼优质解答
答案和解析
过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.作业帮
∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°.
∵CE⊥BC,∴∠ACE=∠B=45°.
在△ABM和△ACE中,
AB=AC
∠B=∠ACE
BM=CE

∴△ABM≌△ACE(SAS).
∴AM=AE,∠BAM=∠CAE.
∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.
于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.
在△MAN和△EAN中,
AM=AE
∠MAN=∠EAN
AN=AN

∴△MAN≌△EAN(SAS).
∴MN=EN.
在Rt△ENC中,由勾股定理,得EN2=EC2+NC2
∴MN2=BM2+NC2
∵BM=1,CN=3,
∴MN2=12+32
∴MN=
10