早教吧作业答案频道 -->数学-->
圆椎曲线双曲线x平方/a平方+y平方/b平方=1(a>1,b>0)的焦距为2c,直线l过点(a,0)和(0,b),且点(1,0),(-1,0)到直线l的距离之和不小于c,则此双曲线的离心率为
题目详情
圆椎曲线
双曲线x平方/a平方+y平方/b平方=1(a>1,b>0)的焦距为2c,直线l过点(a,0)和(0,b),且点(1,0),(-1,0)到直线l的距离之和不小于c,则此双曲线的离心率为
双曲线x平方/a平方+y平方/b平方=1(a>1,b>0)的焦距为2c,直线l过点(a,0)和(0,b),且点(1,0),(-1,0)到直线l的距离之和不小于c,则此双曲线的离心率为
▼优质解答
答案和解析
上面的答案有误
离心率只可能是正数,怎么可能为负的呢?
(x^2)/(a^2)-(y^2)/(b^2) (a大于1,b大于0)
l:x/a+y/b=1 即bx+ay=ab
d1=|b-ab|/√(a^2+b^2)
d2=|b+ab|/√(a^2+b^2)
d1+d2=s≥4c/5
s≥c a>1
所以ab-b+ab+b=2ab≥c*√(a^2+b^2)
两边平方可得4(ab)^2≥c^2*(a^2+b^2)
因为b^2=a^2-c^2带入化简可得
(1/e^2 -1)≥(2-e^2)
e^4-3*e^2+1≥0
得e^2≥(3+√5)/2
所以e≥√((3+√5)/2)
离心率只可能是正数,怎么可能为负的呢?
(x^2)/(a^2)-(y^2)/(b^2) (a大于1,b大于0)
l:x/a+y/b=1 即bx+ay=ab
d1=|b-ab|/√(a^2+b^2)
d2=|b+ab|/√(a^2+b^2)
d1+d2=s≥4c/5
s≥c a>1
所以ab-b+ab+b=2ab≥c*√(a^2+b^2)
两边平方可得4(ab)^2≥c^2*(a^2+b^2)
因为b^2=a^2-c^2带入化简可得
(1/e^2 -1)≥(2-e^2)
e^4-3*e^2+1≥0
得e^2≥(3+√5)/2
所以e≥√((3+√5)/2)
看了 圆椎曲线双曲线x平方/a平方...的网友还看了以下:
双曲线准线推导双曲线上一点到右焦点距离与到右准线(x=a²/c)距离之比为定值e=c/a,那就是说 2020-04-08 …
已知椭圆C的焦点在x轴上,中心为坐标原点.椭圆C上的点到焦点的最远距离是6,最近距离是2.求(1) 2020-05-13 …
椭圆C的焦点在x轴上焦距为2,直线l:x-y-1=0与椭圆C交于A、B两点,F1是左焦点F1A⊥F 2020-05-15 …
1.椭圆c的焦点在x轴上,焦距为2,直线l:x-y-1=0与椭圆c交于A、B两点,F1是左焦点且F 2020-05-15 …
一凸透镜的焦距是12cm,物体直立在它的主轴上距焦点6厘米处一凸透镜的焦距为12cm,物体直立在它 2020-05-15 …
如图所示是小东制作的昆虫观察盒,在盒盖上端安装凸透镜便于观察盒内小昆虫放大的像,盒盖到盒底的距离为 2020-07-16 …
当物距在1倍焦距和2倍焦距之间时,像距焦距,得到了实像. 2020-07-31 …
用凸透镜成像时,定义像与物的大小之比为“放大率”,则在物体成像的情况下()A.物距一定时,焦距越小 2020-07-31 …
已知椭圆C的焦点在Y轴上,离心率为2分之根号2,且短轴的一个端点到下焦点F的距离是根号2设直线y= 2020-07-31 …
高二数学方程为16分之x2+12分之y2=1,求平面内与椭圆c在y轴上的两个顶点的距离差的绝对值等 2020-08-01 …