早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,△ABC是等边三角形,延长BC至D,连接AD,在AD上取一点E,连接BE交AC于F,若AF+CD=AD,DE=2,AF=4,则AD长为.

题目详情
如图,△ABC是等边三角形,延长BC至D,连接AD,在AD上取一点E,连接BE交AC于F,若AF+CD=AD,DE=2,AF=4,则AD长为___.
作业帮
▼优质解答
答案和解析
作业帮 如图,延长CA至点G使GA=CD,连接GB,
∵△ABC是等边三角形,
∴AB=CA,∠BAC=∠ACB=60°,
∴∠GAB=∠DCA=120°,
∴在△GBA与△DAC中,
GA=DC
∠GAB=∠DCA
AB=CA

∴△GBA≌△DAC(SAS),
∴BG=AD,
∵AF+CD=AD,AF+GA=GF,
∴GF=AD,
∴BG=GF.
∴∠GBF=∠GFB.
又∵∠GBA=∠CAD,
∴∠ABE=∠AEB,
∴AB=AE.
设AD=a,则BG=a,AB=AE=a-2,GA=GF-AF=BG-AF=a-4,
又∵∠GAB=120°,
∴作BH⊥AC,垂足为H,易求a=7,即AD=7.
故答案是:7.