早教吧作业答案频道 -->数学-->
设函数f(x)=2x-cosx,{An}是公差为TT/8的等差数列,f(a1)+f(a2)+…f(a5)=5TT,则 f[(a3)]^2-a1a3=
题目详情
设函数f(x)=2x-cosx,{An}是公差为TT/8的等差数列,f(a1)+f(a2)+…f(a5)=5TT,则 f[(a3)]^2-a1a3=
▼优质解答
答案和解析
f(a1)+f(a2)+f(a3)+f(a4)+f(a5)=2(a1+a2+a3+a4+a5)-(cosa1+cosa2+cosa3+cosa4+cosa5)
=10a3-(cosa1+cosa2+cosa3+cosa4+cosa5)
=10a3-[cos(a3-2π/8)+cos(a3-π/8)+cosa3+cos(a3+π/8)+cos(a3+2π/8)]
=5π
10a3-5π=[cos(a3-2π/8)+cos(a3-π/8)+cosa3+cos(a3+π/8)+cos(a3+2π/8)]
=[cos(a3-2π/8)+cos(a3+2π/8)]+cosa3+[cos(a3-π/8)+cos(a3+π/8)]
=2cosa3cos(π/4)+cosa3+2cosa3cos(π/8)
=[1+2cos(π/4)+2cos(π/8)]cosa3
=[1+√2+√(2+√2)]cosa3
设g(x)=-[1+√2+√(2+√2)]cosx+10x-5π
g'(x)=[1+√2+√(2+√2)]sinx+10>0
g(x)没有拐点,单调递增,最多有1个解.
g‘’(x)=-[1+√2+√(2+√2)]cosx
g'(x)在x=kπ+π/2处有拐点,
f[(a3)]^2-a1a3=(2a3-cosa3)^2-a1a3
=[2(a1+π/4)-cos(a1+π/4)]^2-a1(a1+π/4)
=4(a1+π/4)^2+[cos(a1+π/4)]^2-4(a1+π/4)cos(a1+π/4)-a1(a1+π/4)
=10a3-(cosa1+cosa2+cosa3+cosa4+cosa5)
=10a3-[cos(a3-2π/8)+cos(a3-π/8)+cosa3+cos(a3+π/8)+cos(a3+2π/8)]
=5π
10a3-5π=[cos(a3-2π/8)+cos(a3-π/8)+cosa3+cos(a3+π/8)+cos(a3+2π/8)]
=[cos(a3-2π/8)+cos(a3+2π/8)]+cosa3+[cos(a3-π/8)+cos(a3+π/8)]
=2cosa3cos(π/4)+cosa3+2cosa3cos(π/8)
=[1+2cos(π/4)+2cos(π/8)]cosa3
=[1+√2+√(2+√2)]cosa3
设g(x)=-[1+√2+√(2+√2)]cosx+10x-5π
g'(x)=[1+√2+√(2+√2)]sinx+10>0
g(x)没有拐点,单调递增,最多有1个解.
g‘’(x)=-[1+√2+√(2+√2)]cosx
g'(x)在x=kπ+π/2处有拐点,
f[(a3)]^2-a1a3=(2a3-cosa3)^2-a1a3
=[2(a1+π/4)-cos(a1+π/4)]^2-a1(a1+π/4)
=4(a1+π/4)^2+[cos(a1+π/4)]^2-4(a1+π/4)cos(a1+π/4)-a1(a1+π/4)
看了 设函数f(x)=2x-cos...的网友还看了以下:
已知定义域为R的函数f(x)满足1、f(x)+f(x+2)=2x的平方-4x+22、f(x+1)- 2020-04-27 …
设f(x)=2x+3/2x^2 [-1,0) xe^x/(e^x+1)^2[0,1] 求函数F(x 2020-05-16 …
Excel将G至S列每行中数字提取到T列的函数公式将G至S列每行中数字提取到T列(如图所示),请问 2020-05-22 …
已知函数y=f(x)在t=0处可导,且具有性质f(t+s)=(f(t)+f(s))/(1-f(t) 2020-06-08 …
导数下方的面积问题导数下方的面积与原函数到底是什么关系?是相等吗?因为一个导数可以对应很多函数.f 2020-06-10 …
高数题目设f(x)在[a,b]上可导,又f'(x)+[f(x)]^2-∫(a到x)f(t)dt=0 2020-06-12 …
求解一道傅里叶变换的题:求f(t)=sintcost的傅里叶变换求f(t)=sintcost的傅里 2020-06-14 …
已知f(x-1)=x^2-4x,求函数f(x),f(2x+1)的解析式令t=x-1,则有:x=t+ 2020-06-17 …
针对程序段:IF(A||B||C)THENW=W/X,对于(A,B,C)的取值,(57)测试用例能 2020-07-10 …
变限积分[a,b]上的积分∫[f(x+h)-f(x)]dx令x+h=t,那原式=∫[a+h,b+h 2020-07-11 …