早教吧作业答案频道 -->数学-->
梯形ABCD,AD平行于BC,S三角形AOD:S三角形ACD=1:3,求S三角形AOD:S三角形BOC写出详细的说明
题目详情
梯形ABCD,AD平行于BC,S三角形AOD:S三角形ACD=1:3,求S三角形AOD:S三角形BOC
写出详细的说明
写出详细的说明
▼优质解答
答案和解析
∵△AOD和△ACD是以D为顶点,AO和AC为底的两个同高三角形,且S△AOD:S△ACD=1:3,
∴AO:AC=1:3(两个同高的三角形的面积之比等于两高对应的两底之比).
∴AO:OC=1:2.
∵AD‖BC,
∴∠ADO=∠CBO(两直线平行,内错角相等).
∵∠AOD=∠COB(对顶角相等),
∴△AOD∽△COB(两角对应相等的两个三角形相似).
∴S△AOD:S△COB=(AO^2):(OC^2)(相似三角形面积比等于对应边的平方比).
∴S△AOD:S△COB=1:4.
本题是利用相似三角形来求值的题目,关键是确定要证明哪两个三角形相似.例如本题中欲求S△AOD:S△COB的值通过得出△AOD∽△COB得到S△AOD:S△COB=(AO^2):(OC^2)从而建立起已知待求之间的关系.证明两三角形相似我们通常有以下5种方法:
(1)定义法:对应角相等,对应边成比例的两个三角形相似;
(2)平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似;
(3)判定定理1:两角对应相等的两个三角形相似;
(4)判定定理2:两边对应成比例且夹角相等,两个三角形相似;
(5)判定定理3:三边对应成比例的两个三角形相似.
在本题中我们就是利用“两角对应相等的两个三角形相似”得到△AOD∽△COB.
解数学题的关键是要在做题中善于从概念出发及时总结与抽象,并能举一反三,触类旁通.
∴AO:AC=1:3(两个同高的三角形的面积之比等于两高对应的两底之比).
∴AO:OC=1:2.
∵AD‖BC,
∴∠ADO=∠CBO(两直线平行,内错角相等).
∵∠AOD=∠COB(对顶角相等),
∴△AOD∽△COB(两角对应相等的两个三角形相似).
∴S△AOD:S△COB=(AO^2):(OC^2)(相似三角形面积比等于对应边的平方比).
∴S△AOD:S△COB=1:4.
本题是利用相似三角形来求值的题目,关键是确定要证明哪两个三角形相似.例如本题中欲求S△AOD:S△COB的值通过得出△AOD∽△COB得到S△AOD:S△COB=(AO^2):(OC^2)从而建立起已知待求之间的关系.证明两三角形相似我们通常有以下5种方法:
(1)定义法:对应角相等,对应边成比例的两个三角形相似;
(2)平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似;
(3)判定定理1:两角对应相等的两个三角形相似;
(4)判定定理2:两边对应成比例且夹角相等,两个三角形相似;
(5)判定定理3:三边对应成比例的两个三角形相似.
在本题中我们就是利用“两角对应相等的两个三角形相似”得到△AOD∽△COB.
解数学题的关键是要在做题中善于从概念出发及时总结与抽象,并能举一反三,触类旁通.
看了 梯形ABCD,AD平行于BC...的网友还看了以下:
菱形ABCD的两条对角线相交于点O,AC=4.2,BD=3,分别在线段OA,OB.OC.OD,上取 2020-05-17 …
如图,已知B′C′∥BC,C′D′∥CD,D′E′∥DE.(1)求证:四边形BCDE位似于四边形B 2020-06-13 …
初中相似几何题一道已知四边形ABCD∽四边形A'B'C'D',它们的周长分别为90cm,72cm, 2020-06-20 …
1.设abcd是四个整数,且使m=(ab+cd)^2-1/4(a^2+b^2-c^2-d^2)^2 2020-07-09 …
如图,把菱形ABCD沿着BD的方向平移到菱形A/B/C/D/′的位置,(1)求证:重叠部分的四边形 2020-07-15 …
C中求三角形面积问题#include#includevoidmain(){doublea,b,c, 2020-07-23 …
C语言求三角形面积问题#include#includevoidmain(){doublea,b,c 2020-07-23 …
已知O点是边长为2倍根号2的正方形ABCD的中心,点E.F分别是AD.BC的中点,沿对角线AC把正 2020-08-02 …
原函数积分加反函数积分…我总不可能画个图吧…怎办…原函数f(x)在[a,b]上单调递增,a>0,f( 2020-11-08 …
请问谁知道用matlab求解多元超越方程组的方法或思路或函数不?形如:a*(1+a+a^3+d+d^ 2020-12-14 …