早教吧
育儿知识
作业答案
考试题库
百科
知识分享
创建时间
资源类别
相关度排序
共找到 3 与则由朗格朗日定理f 相关的结果,耗时69 ms
试证明至少存在一点ξ∈(1,e)使得Sin1=Cos(Inξ')各位大哥帮帮忙啊我已经忘了设f(x)=sin(Inx)
则由朗格朗日定理f
(Inb)-f(Ina)/(Inb-Ina)=f'(Inξ)即至少存在存在ξ∈(1,e)使得sin1=f'
数学
os(Inξ')
定积分证明题设x>0,证明∫1/(1+t^2)+∫1/(1+t^2)=π/2注:两个积分式的上下线分别是0x和01/x答案上的解法是:记f(x)=左边则f‘(x)=1/(1+x^2)+1/(1+1/x^2)*(-1/x^2)=0由拉格朗日中值定理推论得f(
数学
恒等于C (x>0)而f(1
若函数可导,则导函数连续命题:若f(x)在I上可导,则其导函数连续.证明:在x0临近取一点x,在区间〔x0,x〕或〔x,x0〕上,f(x)满足拉格朗日中值定理的条件,由此得(f(x)-f(x0))/(X-X0)=f’(a),a在x
数学
,a→x0-,所以上式两边令
1
>
热门搜索: