早教吧
育儿知识
作业答案
考试题库
百科
知识分享
创建时间
资源类别
相关度排序
共找到 12 与顶点v之间存在 相关的结果,耗时61 ms
每四年一次的世界杯足球赛吸引了众多的球迷,实际上国际足联规定的足球是由一块块正五边形、正六边形的皮缝制而成的.若将之视作一个多面体,则它的面数f、棱数e、
顶点v之间存在
数学
18世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式,请你观察下列几种简单的多面体模型,解答下列问题:(1)
数学
_ 六面体8______ 1
伟大的数学家欧拉惊奇地发现F,E,V之间存在一个奇妙的相等关系,根据上面的表格,你能归纳出这个相等关名称个面的形状顶点数(V)面数(F)棱数(E)V+F-E四面体三角形4462六面体
数学
二面体 五边形 20 12
18世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型如图1,解答下列问题:
其他
长方体 8 1
十八世纪瑞士数学家欧拉证明了简单多面体中面数(f)、顶点数(v)棱数(e)之间存在的一个有趣的关系式,被称为欧拉公式.(1)写出下面表格中x,y的值,及面数f,顶点数v,棱数e之间存在的
数学
长方形 6 8 x正八面体
十八世纪瑞士数学家欧拉证明了简单多面体的顶点数(V)、面树(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)
数学
数(E) 四面体
十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)
其他
)某个玻璃饰品的外形是简单多
根据多面体顶点数(V)、面数(F)和棱数(E)之间的关系(V+F-E=2),判断是否存在满足以下条件的多面体.(1)4个顶点,4个面,8条棱;(2)14个顶点,9个面,21个棱.
其他
多面体中顶点数(v),面数(f),棱数(e)之间存在的一个有趣的关系式,被称为欧拉公式,问是怎样的
数学
十八世纪数学家欧拉证明了简单多面体中顶点数(v),面数(f),棱数(e)之间存在一个有趣的数量关系:v+f-e=2,这就是著名的欧拉定理.某个玻璃饰品的外形是简单的多面体,它的外表
数学
是x个,八边形的个数是y,则
1
2
>
热门搜索: