早教吧 育儿知识 作业答案 考试题库 百科 知识分享

18世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型如图1,解答下列问题:

题目详情
18世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型如图1,解答下列问题:
多面体 顶点数(V) 面数(F) 棱数(E)
四面体 4 4
长方体 8 12
正八面体 8 12
正十二面体 20 12 30
(1)根据上面多面体模型,完成表格中的空格,你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是______.
(2)一个多面体的面数与顶点数相等,有12条棱,这个多面体是______面体
(3)图2足球虽然是球体,但实际上足球表面是由正五边形,正六边形皮料组成的多面体加工而成每块正五边形皮料周围都是正六边形皮料;每两个相邻的多边形恰有一条公共的边;每个顶点处都有三块皮料,而且都遵循一个正五边形、两个正六边形的规律,请你利用(1)中的关系式,求出一个足球中各有多少块正五边形、正六边形的皮料.
▼优质解答
答案和解析
(1)四面体的棱数为6;正八面体的顶点数为6;关系式为:V+F-E=2;

(2)由题意得:F+F-12=2,
解得:F=7;

(3)设正五边形x块,正六边形y块,由题意得
x+y+
1
3
(5x+6y)−
1
2
(5x+6y)=2
5x=
1
2
×6y

解得
x=12
y=20

所以正五边形为12块,正六边形为20块.
看了18世纪瑞士数学家欧拉证明了简...的网友还看了以下:

证明不存在有7条棱的简单多面体.  2020-06-27 …

(2011•南海区模拟)十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(v)、面数(f)、棱数(e  2020-06-27 …

十八世纪数学家欧拉证明了简单多面体中顶点数(v),面数(f),棱数(e)之间存在一个有趣的数量关系  2020-06-27 …

下列命题中,正确命题的个数是()①正多面体只有5种②一个多面体的表面经过连续变形变为球面的多面体  2020-06-27 …

给出下列命题:①正四棱柱是正多面体;②正四棱柱是简单多面体;③简单多面体是凸多面体;④以正四面体各  2020-08-01 …

十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系  2020-11-18 …

十八世纪瑞士数学家欧拉证明了简单多面体的顶点数(V)、面树(F)、棱数(E)之间存在的一个有趣的关系  2020-11-18 …

十八世纪瑞士数学家欧拉证明了简单多面体中面数(f)、顶点数(v)棱数(e)之间存在的一个有趣的关系式  2020-11-18 …

18世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系  2020-11-18 …

18世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系  2020-11-18 …