早教吧作业答案频道 -->数学-->
高数题,Lagrange乘数法解决条件极值问题在平面坐标系OXY中,求点P(1,2)到曲线y=x²的最短距离要求:1)写出目标函数f(x,y)2)写出约束条件3)写出Lagarange函数4)写出最小点满足的方程组按Alt
题目详情
高数题,Lagrange乘数法解决条件极值问题
在平面坐标系OXY中,求点P(1,2)到曲线y=x²的最短距离
要求:1)写出目标函数f(x,y)
2) 写出约束条件
3) 写出Lagarange函数
4)写出最小点满足的方程组
按Alt同时按178/179分别可以打出"²""³"
在平面坐标系OXY中,求点P(1,2)到曲线y=x²的最短距离
要求:1)写出目标函数f(x,y)
2) 写出约束条件
3) 写出Lagarange函数
4)写出最小点满足的方程组
按Alt同时按178/179分别可以打出"²""³"
▼优质解答
答案和解析
1)目标函数f(x,y)=(x-1)^2+(y-2)^2 .
2) 约束条件y-x^2=0.
3) Lagarange函数Φ(x,y,λ)=(x-1)^2+(y-2)^2+λ(y-x^2).
4)最小点满足的方程组2(x-1)-2λx=0.(1)
2(y-2)+λ=0.(2)
y-x^2=0.(3)
2) 约束条件y-x^2=0.
3) Lagarange函数Φ(x,y,λ)=(x-1)^2+(y-2)^2+λ(y-x^2).
4)最小点满足的方程组2(x-1)-2λx=0.(1)
2(y-2)+λ=0.(2)
y-x^2=0.(3)
看了 高数题,Lagrange乘数...的网友还看了以下:
已知点P在曲线y=4/e^x+1上,α为曲线在点P处的切线的倾斜角,则α的取值范围是y=4/[(e 2020-04-11 …
已知M是抛物线C:x^2=4y上的动点,过M作y轴的垂线MN,垂足为N,记线段MN的中点为E.(1 2020-04-13 …
已知M是抛物线C:x^2=4y上的动点,过M作y轴的垂线MN,垂足为N,记线段MN的中点为E.(1 2020-04-13 …
已知一个椭圆和一条直线相交于AB两点,C是右顶点,求ABC最大值,答案中给出的公式是|y1-y2| 2020-05-13 …
若点P(x,y)是椭圆x^2/12+y^2/4=1上的一个动点,求xy最大值不要用参数,用余弦定理 2020-05-17 …
已知椭圆E:x^2/25+y^2/16=1,点p(x,y)是椭圆上一点,求x^2+y^2最值(2) 2020-06-21 …
PQ分别为圆x²+(y-6)²=2和椭圆x²/10+y²=1上得两点,求PQ最大值 2020-07-18 …
在直角坐标系xOy中曲线C1:x+y=4曲线C2:(θ为参数)以坐标原点O为极点x轴的非负半轴为极 2020-07-31 …
已知点Q(0,1/2),设点P为椭圆x^2/4+y^2/3=1上的动点,求PQ最大值 2020-11-01 …
函数题,最短路径已知点A(0,3)和点B(0,1),若一个动点P从点B出发,先到达x轴上的某点(设为 2020-11-26 …