早教吧作业答案频道 -->数学-->
高中数学难题,设数列an满足an=n^2/[(3^n+n)-n],证明an≤4/9(提示用多种方法解例如导数法,数学归纳法,数列法等等,越多越好)
题目详情
高中数学难题,设数列an满足an=n^2/[(3^n+n)-n],证明an≤4/9(提示用多种方法解例如导数法,数学归纳法,数列法等等,越多越好)
▼优质解答
答案和解析
首先你题目直接写成n^2/3^n就可以了
法1 求极限 lim n^2/3^n 洛必达法则 当n→+∞,可得极限为0 而显然f(x )=2x/3^x递减.所以最大值为n=1时的 三分之一
法二 归纳法 n=1 就不说了,设n=k时成立,n=k+1时
可得ak+1-ak=(k+1)^2/3^k+1-k^2/3^k=(k^2+2k+1-3k^6)/3^k+1
分子可以化简为-2(k-1/2)^2+3/2
因为k>=2 K=2带入可得 小于0 .所以 n=k+1时 小于n=k时 归纳法可得 an成立.
就这样 不满意我也就算了 累 打着都累
法1 求极限 lim n^2/3^n 洛必达法则 当n→+∞,可得极限为0 而显然f(x )=2x/3^x递减.所以最大值为n=1时的 三分之一
法二 归纳法 n=1 就不说了,设n=k时成立,n=k+1时
可得ak+1-ak=(k+1)^2/3^k+1-k^2/3^k=(k^2+2k+1-3k^6)/3^k+1
分子可以化简为-2(k-1/2)^2+3/2
因为k>=2 K=2带入可得 小于0 .所以 n=k+1时 小于n=k时 归纳法可得 an成立.
就这样 不满意我也就算了 累 打着都累
看了 高中数学难题,设数列an满足...的网友还看了以下:
难题!可以证明,对任意的n属于N+,有(1+2+……+n)^2=1^3+2^3+……n^3成立,下 2020-05-14 …
高中数学难题,设数列an满足an=n^2/[(3^n+n)-n],证明an≤4/9(提示用多种方法 2020-05-21 …
数列的Sn的问题好难哦分别求下列树列的Sn1、1*2+2*3+...+n(n+1)2、5+55+5 2020-06-04 …
爆难高手整数数列{an}满足a1a2+a2a3+...+a(n-1)an=(n-1)n(n+1)/ 2020-07-09 …
对任意正整数n,定义n的阶乘n!如下:n!=n(m-1)(n-2)×…×3×2×1.例如3!=3× 2020-07-29 …
七年级数学有点难哦1用数学归纳法,证明对於n=1,2,3...以下等式成立:(i)1^2+2^2+ 2020-08-01 …
一道古典概型的问题,为什么我怎么算答案都是13/19,难道总的情况中不需要去掉m、n同时小于0的情况 2020-11-03 …
几个数学难题,求助!1.已知a-b=4,ab+m^-6m+13=0,则ab+m的值为()2.计算(1 2020-12-24 …
下列词语中加点字的读音,与所给注音全都相同的一项是()A.难nán难处难怪难民苦难B.粘nián粘液 2020-12-24 …
设S=1+2+3+.+n①则S=n+(n-1)+(n-2)+.+3+2+1②①+②,得2S=(n+1 2021-01-16 …