早教吧 育儿知识 作业答案 考试题库 百科 知识分享

定义在实数集R上的奇函数f(x)满足:①f(x)在(0,+∞)内单调递增,②f(-1)=0,则不等式(x+1)f(x)>0的解集为.

题目详情
定义在实数集R上的奇函数f(x)满足:①f(x)在(0,+∞)内单调递增,②f(-1)=0,则不等式(x+1)f(x)>0的解集为______.
▼优质解答
答案和解析
∵实数集R上的奇函数f(x)满足f(-1)=0,
∴函数f(x)的图象过点(-1,0)和点(1,0).
∵f(x)在(0,+∞)内单调递增,
∴f(x)在(-∞,0)内单调递增.
∴当x<-1或0<x<1时,f(x)<0;
当-1<x<0或x>1时,f(x)>0.
当x=-1或x=1或x=0时,f(x)=0.
∵(x+1)f(x)>0,
x+1>0
f(x)>0
x+1<0
f(x)<0

∴-1<x<0或x>1或x<-1.
∴不等式(x+1)f(x)>0的解集为{x|x<-1或-1<x<0或x>1}.