早教吧作业答案频道 -->数学-->
定义在实数集R上的奇函数f(x)满足:①f(x)在(0,+∞)内单调递增,②f(-1)=0,则不等式(x+1)f(x)>0的解集为.
题目详情
定义在实数集R上的奇函数f(x)满足:①f(x)在(0,+∞)内单调递增,②f(-1)=0,则不等式(x+1)f(x)>0的解集为______.
▼优质解答
答案和解析
∵实数集R上的奇函数f(x)满足f(-1)=0,
∴函数f(x)的图象过点(-1,0)和点(1,0).
∵f(x)在(0,+∞)内单调递增,
∴f(x)在(-∞,0)内单调递增.
∴当x<-1或0<x<1时,f(x)<0;
当-1<x<0或x>1时,f(x)>0.
当x=-1或x=1或x=0时,f(x)=0.
∵(x+1)f(x)>0,
∴
或
,
∴-1<x<0或x>1或x<-1.
∴不等式(x+1)f(x)>0的解集为{x|x<-1或-1<x<0或x>1}.
∴函数f(x)的图象过点(-1,0)和点(1,0).
∵f(x)在(0,+∞)内单调递增,
∴f(x)在(-∞,0)内单调递增.
∴当x<-1或0<x<1时,f(x)<0;
当-1<x<0或x>1时,f(x)>0.
当x=-1或x=1或x=0时,f(x)=0.
∵(x+1)f(x)>0,
∴
|
|
∴-1<x<0或x>1或x<-1.
∴不等式(x+1)f(x)>0的解集为{x|x<-1或-1<x<0或x>1}.
看了 定义在实数集R上的奇函数f(...的网友还看了以下:
定义域为R的函数f(x),满足f(0)=1,f′(x)<f(x)+1,则不等式f(x)+1<2ex 2020-05-17 …
定义在R上的函数f(x)对任意a,b∈R都有f(a+b)=f(a)+f(b)+k(k为常数).(I 2020-06-02 …
已知定义在R+上的函数f(x)同时满足下列三个条件:f(3)=-1;对任意x、y属于R+,都有f( 2020-06-03 …
定义域为R的函数f(x),满足f(0)=1,f′(x)<f(x)+1,则不等式f(x)+1<2ex 2020-06-25 …
已知a大于0,函数f(x)=ax^2+bx+c,若x0满足关于x的方程2ax+b=0,则假命题是A 2020-07-13 …
已知函数f(x)=ex-e-x-2x,x∈R(1)证明f(x)为奇函数,并在R上为增函数;(2)若 2020-07-26 …
[高一数学]已知全集为R,集合A={x|f(x)=0},B={x|g(x)=0},则不等式f(x) 2020-07-29 …
高数.设f:R→R,对于每个X属于R,f(x)=x2(上标).显然是个映射,定义域Df=R.值域y 2020-07-30 …
设定义在R上的函数F(X),对任意X,Y∈R有F(X+Y)=F(X)f(Y)设定义在R上的函数f( 2020-08-02 …
f(x)是R上的非奇非偶函数的等价命题是,对与任意的R,都有f(-x)不等于f(x)且f(-x)不 2020-08-02 …