早教吧作业答案频道 -->数学-->
一次函数f(x)是R上的增函数,g(x)=f(x)(x+m),已知f[f(x)]=16x+5一次函数f(x)是R上的增函数,g(x)=f(x)(x+m),已知f[f(x)]=16x+5①求fx②若gx在(1,+oo)单调递增,求实数m的取值范围③当x∈[-1,3]时,gx有最大值
题目详情
一次函数f(x)是R上的增函数,g(x)=f(x)(x+m),已知f[f(x)]=16x+5
一次函数f(x)是R上的增函数,g(x)=f(x)(x+m),已知f[f(x)]=16x+5
①求fx
②若gx在(1,+oo)单调递增,求实数m的取值范围
③当x∈[-1,3]时,gx有最大值13,求实数m的值
一次函数f(x)是R上的增函数,g(x)=f(x)(x+m),已知f[f(x)]=16x+5
①求fx
②若gx在(1,+oo)单调递增,求实数m的取值范围
③当x∈[-1,3]时,gx有最大值13,求实数m的值
▼优质解答
答案和解析
(1)设f(x)=ax+b,则f[f(x)]=a(ax+b)+b=(a^2)x+(a+1)b=16x+5.
因为f(x)是R上的增函数,故a=4,b=1.f(x)=4x+1
(2)g(x)=(4x+1)(x+m)=4x^2+(4m+1)x+m,其对称轴为x=-(4m+1)/8
因为g(x)在(1,+∞)单调递增,故对称轴应在x=1的左边,即-(4m+1)/8≤1,m≥-9/4
(3)因为g(x)开口向上,故闭区间上的最大值只能在区间端点处取得.
若g(-1)=13,m=-10/3,此时g(3)=-13/3.g(-1)>g(3),g(x)在x=-1处取得最大值13.
若g(3)=13,m=-2,此时g(-1)=9.g(3)>g(-1),g(x)在x=3处取得最大值13.
故m=-10/3或m=-2.
因为f(x)是R上的增函数,故a=4,b=1.f(x)=4x+1
(2)g(x)=(4x+1)(x+m)=4x^2+(4m+1)x+m,其对称轴为x=-(4m+1)/8
因为g(x)在(1,+∞)单调递增,故对称轴应在x=1的左边,即-(4m+1)/8≤1,m≥-9/4
(3)因为g(x)开口向上,故闭区间上的最大值只能在区间端点处取得.
若g(-1)=13,m=-10/3,此时g(3)=-13/3.g(-1)>g(3),g(x)在x=-1处取得最大值13.
若g(3)=13,m=-2,此时g(-1)=9.g(3)>g(-1),g(x)在x=3处取得最大值13.
故m=-10/3或m=-2.
看了 一次函数f(x)是R上的增函...的网友还看了以下:
下列命题正确的是()A.若函数f(x)在x=a处连续,则函数f(x)在x=a的邻域内连续B.若函数 2020-06-12 …
(2012•浦东新区二模)已知函数f(x)=2sinxcosx+2cos2x.(1)求函数f(x) 2020-06-27 …
(2012•浦东新区二模)已知函数f(x)=2sinxcosx+2cos2x.(1)求函数f(x) 2020-06-29 …
(1)函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=lg(x+1)+x2,当x为实数时 2020-07-20 …
函数f(X)对任意a,b都有f(a+b)=f(a)+f(b)-1,且当X〉0时有f(x)〉1.求证 2020-08-01 …
已知函数f(x)=x-1-lnx,g(x)=ex-e-x-ax(e为自然对数的底数).(1)若g( 2020-08-02 …
求ln[(1+X)/(1-X)]的导数求ln[(1+X)/(1-X)]导数的思路和答案我知道lnx的 2020-10-31 …
1.1nmile约合1852m,根据这一关系写出米数y关于海里数x的函数解析式2.已知函数h(x)= 2020-12-08 …
求二次函数未知数的取值范围已知二次函数f(x)=ax^2+bx+c满足:对任意实数x都有f(x)≥x 2020-12-08 …
奇偶函数x的正负问题奇函数:f(-x)=-f(x)偶函数:f(-x)=f(x)设f(x)=sinx则 2021-01-14 …