早教吧作业答案频道 -->数学-->
若f(x)连续且满足∫x到0f(x-t)dt=cos(x^2+1),求f(x)
题目详情
若f(x)连续且满足∫x到0 f(x-t)dt=cos(x^2+1),求f(x)
▼优质解答
答案和解析
设u = x-t
t=0时,u=x
t= x时,u=0
∫x到0 f(x-t)dt
= -∫x到0 f(x-t)d(x-t)
= -∫0到x f(u)du
两边求导数,
-f(x) = cos(x^2+1)' = -sin(x^2+1) * 2x
f(x) = 2x sin(x^2+1)
t=0时,u=x
t= x时,u=0
∫x到0 f(x-t)dt
= -∫x到0 f(x-t)d(x-t)
= -∫0到x f(u)du
两边求导数,
-f(x) = cos(x^2+1)' = -sin(x^2+1) * 2x
f(x) = 2x sin(x^2+1)
看了 若f(x)连续且满足∫x到0...的网友还看了以下:
高数关于可导的问题在复习全书中某题的解答有这么一句话:[f(x)]^2=∫(0→x^2)f(√t) 2020-04-25 …
设f(x)在[a,b]上连续且f(x)>0,F(x)=∫(a,x)f(t)dt+∫(b,x)dt/ 2020-06-03 …
f(x)=∫(x,1)lnt/(1+t)dt求f(x)+f(1/x) 2020-06-11 …
设f(x)可导,且f(0)=0,F(x)=∫﹙0→x﹚{[t^(n-1)]f(x^n-t^n)}d 2020-06-12 …
高等数学积分问题(求爹爹跪奶奶)列7,设f(x)为连续函数,且f(x)=x+2∫1-0f(t)dt 2020-07-07 …
设函数f(x)在(0,1)上连续,且满足f(x)=x+2∫(0,1)f(t)dt,求f(x)更简洁 2020-07-23 …
一道定积分题b设f(x)可导,f(0)=0,F(x)=S[0到x]t^(n-1)f(x^n-t^n 2020-07-23 …
f(x)=e^x+∫tf(t)dt-x∫f(t)dt解f'(x)=e^x+xf(x)-∫f(t)d 2020-07-31 …
高数微分方程课后练习6.设连续函数f(x)满足方程f(x)=X^3+1-x*∫(0到x)f(t)dt 2020-11-19 …
若F(x)=∫(x,a)xf(t)dt,则F'(x)=F(x)=∫(x,a)xf(t)dt=x∫(x 2020-12-10 …