早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,已知直线l1∥l2∥l3∥l4∥l5,相邻两条平行直线间的距离相等且为1,如果四边形ABCD的四个顶点在平行直线上,∠BAD=90°且AB=3AD,DC⊥l4,则四边形ABCD的面积是()A.9B.14C.213D.516

题目详情
123454


21
3

D.
51
6
21
3
212133
51
6
51
6
515166
▼优质解答
答案和解析
延长DC交l55于点F,延长CD交l11于点E,作点B作BH⊥l11于点H,连接BD,
∵DC⊥l44,l11∥l22∥l33∥l44∥l55,
∴DC⊥l11,DC⊥l55,
∴∠BHA=∠DEA=90°,
∴∠ABH+∠BAH=90°,
∵∠BAD=90°,
∴∠BAH+∠DAE=90°,
∴∠ABH=∠DAE,
∴△BAH∽△ADE,
AB
AD
=
BH
AE
=
AH
DE

∵AB=3AD,BH=4,DE=1,
∴AE=
4
3
,AH=3,
∴BF=HE=AH+AE=3+
4
3
=
13
3

在Rt△ADE中,AD=
AE2+DE2
=
(
4
3
)2+12
=
5
3

∴AB=3AD=5,
∴S四边形ABCD=S△ABD+S△BCD=
1
2
AB•AD+
1
2
CD•BF=
1
2
×5×
5
3
+
1
2
×2×
13
3
=
51
6

故选D.
AB
AD
ABABABADADAD=
BH
AE
=
AH
DE

∵AB=3AD,BH=4,DE=1,
∴AE=
4
3
,AH=3,
∴BF=HE=AH+AE=3+
4
3
=
13
3

在Rt△ADE中,AD=
AE2+DE2
=
(
4
3
)2+12
=
5
3

∴AB=3AD=5,
∴S四边形ABCD=S△ABD+S△BCD=
1
2
AB•AD+
1
2
CD•BF=
1
2
×5×
5
3
+
1
2
×2×
13
3
=
51
6

故选D.
BH
AE
BHBHBHAEAEAE=
AH
DE

∵AB=3AD,BH=4,DE=1,
∴AE=
4
3
,AH=3,
∴BF=HE=AH+AE=3+
4
3
=
13
3

在Rt△ADE中,AD=
AE2+DE2
=
(
4
3
)2+12
=
5
3

∴AB=3AD=5,
∴S四边形ABCD=S△ABD+S△BCD=
1
2
AB•AD+
1
2
CD•BF=
1
2
×5×
5
3
+
1
2
×2×
13
3
=
51
6

故选D.
AH
DE
AHAHAHDEDEDE,
∵AB=3AD,BH=4,DE=1,
∴AE=
4
3
,AH=3,
∴BF=HE=AH+AE=3+
4
3
=
13
3

在Rt△ADE中,AD=
AE2+DE2
=
(
4
3
)2+12
=
5
3

∴AB=3AD=5,
∴S四边形ABCD=S△ABD+S△BCD=
1
2
AB•AD+
1
2
CD•BF=
1
2
×5×
5
3
+
1
2
×2×
13
3
=
51
6

故选D.
4
3
444333,AH=3,
∴BF=HE=AH+AE=3+
4
3
=
13
3

在Rt△ADE中,AD=
AE2+DE2
=
(
4
3
)2+12
=
5
3

∴AB=3AD=5,
∴S四边形ABCD=S△ABD+S△BCD=
1
2
AB•AD+
1
2
CD•BF=
1
2
×5×
5
3
+
1
2
×2×
13
3
=
51
6

故选D.
4
3
444333=
13
3

在Rt△ADE中,AD=
AE2+DE2
=
(
4
3
)2+12
=
5
3

∴AB=3AD=5,
∴S四边形ABCD=S△ABD+S△BCD=
1
2
AB•AD+
1
2
CD•BF=
1
2
×5×
5
3
+
1
2
×2×
13
3
=
51
6

故选D.
13
3
131313333,
在Rt△ADE中,AD=
AE2+DE2
=
(
4
3
)2+12
=
5
3

∴AB=3AD=5,
∴S四边形ABCD=S△ABD+S△BCD=
1
2
AB•AD+
1
2
CD•BF=
1
2
×5×
5
3
+
1
2
×2×
13
3
=
51
6

故选D.
AE2+DE2
AE2+DE2
AE2+DE2AE2+DE22+DE22=
(
4
3
)2+12
=
5
3

∴AB=3AD=5,
∴S四边形ABCD=S△ABD+S△BCD=
1
2
AB•AD+
1
2
CD•BF=
1
2
×5×
5
3
+
1
2
×2×
13
3
=
51
6

故选D.
(
4
3
)2+12
(
4
3
)2+12
(
4
3
)2+12(
4
3
444333)2+122+122=
5
3

∴AB=3AD=5,
∴S四边形ABCD=S△ABD+S△BCD=
1
2
AB•AD+
1
2
CD•BF=
1
2
×5×
5
3
+
1
2
×2×
13
3
=
51
6

故选D.
5
3
555333,
∴AB=3AD=5,
∴S四边形ABCD四边形ABCD=S△ABD△ABD+S△BCD△BCD=
1
2
AB•AD+
1
2
CD•BF=
1
2
×5×
5
3
+
1
2
×2×
13
3
=
51
6

故选D.
1
2
111222AB•AD+
1
2
CD•BF=
1
2
×5×
5
3
+
1
2
×2×
13
3
=
51
6

故选D.
1
2
111222CD•BF=
1
2
×5×
5
3
+
1
2
×2×
13
3
=
51
6

故选D.
1
2
111222×5×
5
3
+
1
2
×2×
13
3
=
51
6

故选D.
5
3
555333+
1
2
×2×
13
3
=
51
6

故选D.
1
2
111222×2×
13
3
=
51
6

故选D.
13
3
131313333=
51
6

故选D.
51
6
515151666.
故选D.
看了 如图,已知直线l1∥l2∥l...的网友还看了以下: